The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR
Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-02, Vol.6 (1), p.21975-21975, Article 21975 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21975 |
---|---|
container_issue | 1 |
container_start_page | 21975 |
container_title | Scientific reports |
container_volume | 6 |
creator | Brennan, Sarah C. Wilkinson, William J. Tseng, Hsiu-Er Finney, Brenda Monk, Bethan Dibble, Holly Quilliam, Samantha Warburton, David Galietta, Luis J. Kemp, Paul J. Riccardi, Daniela |
description | Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl
−
-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca
2+
-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases. |
doi_str_mv | 10.1038/srep21975 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4766410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898988707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-eb5e7815eedc95d263d6d12895b44ecf8d2e80e6134d89f28e2bcde200ae240c3</originalsourceid><addsrcrecordid>eNplkV9LwzAUxYMoOqYPfgEp-KJCNUmTNnkRZDgVBEHmiy8hTW-3jvSPSTv02xuZjqnJQy7cH-ee3IPQMcGXBCfiyjvoKJEZ30EjihmPaULp7lZ9gI68X-JwOJWMyH10QFNJSMLYCL3OFhDBe--0AWsHq11ktDXVUMceGl8188iBga5vXSjmAejBR4uh1k1UQq9tZIfAFLAC23Y1NH20qnQ0mc6eD9Feqa2Ho-93jF6mt7PJffz4dPcwuXmMDUtEH0POIROEAxRG8oKmSZEWhArJc8bAlKKgIDCkwW8hZEkF0NwUQDHWQBk2yRhdr3W7Ia-DSPDgtFWdq2rtPlSrK_W701QLNW9XimVpysIOx-jsW8C1bwP4XtWV_1qHbqAdvCJZKnhKEy4DevoHXbaDa8L3FBEyXJHhLFDna8q41od8yo0ZgtVXaGoTWmBPtt1vyJ-IAnCxBnxoNXNwWyP_qX0C5Wuibg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898988707</pqid></control><display><type>article</type><title>The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Brennan, Sarah C. ; Wilkinson, William J. ; Tseng, Hsiu-Er ; Finney, Brenda ; Monk, Bethan ; Dibble, Holly ; Quilliam, Samantha ; Warburton, David ; Galietta, Luis J. ; Kemp, Paul J. ; Riccardi, Daniela</creator><creatorcontrib>Brennan, Sarah C. ; Wilkinson, William J. ; Tseng, Hsiu-Er ; Finney, Brenda ; Monk, Bethan ; Dibble, Holly ; Quilliam, Samantha ; Warburton, David ; Galietta, Luis J. ; Kemp, Paul J. ; Riccardi, Daniela</creatorcontrib><description>Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl
−
-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca
2+
-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep21975</identifier><identifier>PMID: 26911344</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 14/1 ; 14/35 ; 14/63 ; 631/136/2060 ; 631/45/612/194 ; 631/80/86/1999 ; 64/60 ; 9/30 ; Adenylyl Cyclases - metabolism ; Animals ; Anoctamin-1 ; Bestrophins ; Calcium ; Calcium (extracellular) ; Calcium-sensing receptors ; Chloride channels ; Chloride channels (calcium-gated) ; Chloride Channels - genetics ; Chloride Channels - metabolism ; Chloride conductance ; Cyclic AMP ; Cystic fibrosis ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Extracellular Space ; Eye Proteins - metabolism ; Fetal Organ Maturity ; Fetus ; Fetuses ; Gene Expression Regulation, Developmental ; Humanities and Social Sciences ; Humans ; Hypercalcemia ; Hypercalcemia - genetics ; Hypercalcemia - metabolism ; Immunohistochemistry ; Ion Channel Gating ; Ion Channels - metabolism ; Lung - embryology ; Lung - metabolism ; Lungs ; Mice ; Models, Biological ; multidisciplinary ; Organogenesis ; Physiology ; Receptors, Calcium-Sensing - metabolism ; Respiratory diseases ; Rodents ; Science ; Secretion</subject><ispartof>Scientific reports, 2016-02, Vol.6 (1), p.21975-21975, Article 21975</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-eb5e7815eedc95d263d6d12895b44ecf8d2e80e6134d89f28e2bcde200ae240c3</citedby><cites>FETCH-LOGICAL-c438t-eb5e7815eedc95d263d6d12895b44ecf8d2e80e6134d89f28e2bcde200ae240c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766410/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766410/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27926,27927,41122,42191,51578,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26911344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brennan, Sarah C.</creatorcontrib><creatorcontrib>Wilkinson, William J.</creatorcontrib><creatorcontrib>Tseng, Hsiu-Er</creatorcontrib><creatorcontrib>Finney, Brenda</creatorcontrib><creatorcontrib>Monk, Bethan</creatorcontrib><creatorcontrib>Dibble, Holly</creatorcontrib><creatorcontrib>Quilliam, Samantha</creatorcontrib><creatorcontrib>Warburton, David</creatorcontrib><creatorcontrib>Galietta, Luis J.</creatorcontrib><creatorcontrib>Kemp, Paul J.</creatorcontrib><creatorcontrib>Riccardi, Daniela</creatorcontrib><title>The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl
−
-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca
2+
-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases.</description><subject>13/1</subject><subject>13/106</subject><subject>14/1</subject><subject>14/35</subject><subject>14/63</subject><subject>631/136/2060</subject><subject>631/45/612/194</subject><subject>631/80/86/1999</subject><subject>64/60</subject><subject>9/30</subject><subject>Adenylyl Cyclases - metabolism</subject><subject>Animals</subject><subject>Anoctamin-1</subject><subject>Bestrophins</subject><subject>Calcium</subject><subject>Calcium (extracellular)</subject><subject>Calcium-sensing receptors</subject><subject>Chloride channels</subject><subject>Chloride channels (calcium-gated)</subject><subject>Chloride Channels - genetics</subject><subject>Chloride Channels - metabolism</subject><subject>Chloride conductance</subject><subject>Cyclic AMP</subject><subject>Cystic fibrosis</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Extracellular Space</subject><subject>Eye Proteins - metabolism</subject><subject>Fetal Organ Maturity</subject><subject>Fetus</subject><subject>Fetuses</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypercalcemia</subject><subject>Hypercalcemia - genetics</subject><subject>Hypercalcemia - metabolism</subject><subject>Immunohistochemistry</subject><subject>Ion Channel Gating</subject><subject>Ion Channels - metabolism</subject><subject>Lung - embryology</subject><subject>Lung - metabolism</subject><subject>Lungs</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Organogenesis</subject><subject>Physiology</subject><subject>Receptors, Calcium-Sensing - metabolism</subject><subject>Respiratory diseases</subject><subject>Rodents</subject><subject>Science</subject><subject>Secretion</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV9LwzAUxYMoOqYPfgEp-KJCNUmTNnkRZDgVBEHmiy8hTW-3jvSPSTv02xuZjqnJQy7cH-ee3IPQMcGXBCfiyjvoKJEZ30EjihmPaULp7lZ9gI68X-JwOJWMyH10QFNJSMLYCL3OFhDBe--0AWsHq11ktDXVUMceGl8188iBga5vXSjmAejBR4uh1k1UQq9tZIfAFLAC23Y1NH20qnQ0mc6eD9Feqa2Ho-93jF6mt7PJffz4dPcwuXmMDUtEH0POIROEAxRG8oKmSZEWhArJc8bAlKKgIDCkwW8hZEkF0NwUQDHWQBk2yRhdr3W7Ia-DSPDgtFWdq2rtPlSrK_W701QLNW9XimVpysIOx-jsW8C1bwP4XtWV_1qHbqAdvCJZKnhKEy4DevoHXbaDa8L3FBEyXJHhLFDna8q41od8yo0ZgtVXaGoTWmBPtt1vyJ-IAnCxBnxoNXNwWyP_qX0C5Wuibg</recordid><startdate>20160225</startdate><enddate>20160225</enddate><creator>Brennan, Sarah C.</creator><creator>Wilkinson, William J.</creator><creator>Tseng, Hsiu-Er</creator><creator>Finney, Brenda</creator><creator>Monk, Bethan</creator><creator>Dibble, Holly</creator><creator>Quilliam, Samantha</creator><creator>Warburton, David</creator><creator>Galietta, Luis J.</creator><creator>Kemp, Paul J.</creator><creator>Riccardi, Daniela</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160225</creationdate><title>The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR</title><author>Brennan, Sarah C. ; Wilkinson, William J. ; Tseng, Hsiu-Er ; Finney, Brenda ; Monk, Bethan ; Dibble, Holly ; Quilliam, Samantha ; Warburton, David ; Galietta, Luis J. ; Kemp, Paul J. ; Riccardi, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-eb5e7815eedc95d263d6d12895b44ecf8d2e80e6134d89f28e2bcde200ae240c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/1</topic><topic>13/106</topic><topic>14/1</topic><topic>14/35</topic><topic>14/63</topic><topic>631/136/2060</topic><topic>631/45/612/194</topic><topic>631/80/86/1999</topic><topic>64/60</topic><topic>9/30</topic><topic>Adenylyl Cyclases - metabolism</topic><topic>Animals</topic><topic>Anoctamin-1</topic><topic>Bestrophins</topic><topic>Calcium</topic><topic>Calcium (extracellular)</topic><topic>Calcium-sensing receptors</topic><topic>Chloride channels</topic><topic>Chloride channels (calcium-gated)</topic><topic>Chloride Channels - genetics</topic><topic>Chloride Channels - metabolism</topic><topic>Chloride conductance</topic><topic>Cyclic AMP</topic><topic>Cystic fibrosis</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Extracellular Space</topic><topic>Eye Proteins - metabolism</topic><topic>Fetal Organ Maturity</topic><topic>Fetus</topic><topic>Fetuses</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypercalcemia</topic><topic>Hypercalcemia - genetics</topic><topic>Hypercalcemia - metabolism</topic><topic>Immunohistochemistry</topic><topic>Ion Channel Gating</topic><topic>Ion Channels - metabolism</topic><topic>Lung - embryology</topic><topic>Lung - metabolism</topic><topic>Lungs</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Organogenesis</topic><topic>Physiology</topic><topic>Receptors, Calcium-Sensing - metabolism</topic><topic>Respiratory diseases</topic><topic>Rodents</topic><topic>Science</topic><topic>Secretion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brennan, Sarah C.</creatorcontrib><creatorcontrib>Wilkinson, William J.</creatorcontrib><creatorcontrib>Tseng, Hsiu-Er</creatorcontrib><creatorcontrib>Finney, Brenda</creatorcontrib><creatorcontrib>Monk, Bethan</creatorcontrib><creatorcontrib>Dibble, Holly</creatorcontrib><creatorcontrib>Quilliam, Samantha</creatorcontrib><creatorcontrib>Warburton, David</creatorcontrib><creatorcontrib>Galietta, Luis J.</creatorcontrib><creatorcontrib>Kemp, Paul J.</creatorcontrib><creatorcontrib>Riccardi, Daniela</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brennan, Sarah C.</au><au>Wilkinson, William J.</au><au>Tseng, Hsiu-Er</au><au>Finney, Brenda</au><au>Monk, Bethan</au><au>Dibble, Holly</au><au>Quilliam, Samantha</au><au>Warburton, David</au><au>Galietta, Luis J.</au><au>Kemp, Paul J.</au><au>Riccardi, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-02-25</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>21975</spage><epage>21975</epage><pages>21975-21975</pages><artnum>21975</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl
−
-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca
2+
-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26911344</pmid><doi>10.1038/srep21975</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-02, Vol.6 (1), p.21975-21975, Article 21975 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4766410 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 13/1 13/106 14/1 14/35 14/63 631/136/2060 631/45/612/194 631/80/86/1999 64/60 9/30 Adenylyl Cyclases - metabolism Animals Anoctamin-1 Bestrophins Calcium Calcium (extracellular) Calcium-sensing receptors Chloride channels Chloride channels (calcium-gated) Chloride Channels - genetics Chloride Channels - metabolism Chloride conductance Cyclic AMP Cystic fibrosis Cystic Fibrosis Transmembrane Conductance Regulator - genetics Cystic Fibrosis Transmembrane Conductance Regulator - metabolism Extracellular Space Eye Proteins - metabolism Fetal Organ Maturity Fetus Fetuses Gene Expression Regulation, Developmental Humanities and Social Sciences Humans Hypercalcemia Hypercalcemia - genetics Hypercalcemia - metabolism Immunohistochemistry Ion Channel Gating Ion Channels - metabolism Lung - embryology Lung - metabolism Lungs Mice Models, Biological multidisciplinary Organogenesis Physiology Receptors, Calcium-Sensing - metabolism Respiratory diseases Rodents Science Secretion |
title | The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20extracellular%20calcium-sensing%20receptor%20regulates%20human%20fetal%20lung%20development%20via%20CFTR&rft.jtitle=Scientific%20reports&rft.au=Brennan,%20Sarah%20C.&rft.date=2016-02-25&rft.volume=6&rft.issue=1&rft.spage=21975&rft.epage=21975&rft.pages=21975-21975&rft.artnum=21975&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep21975&rft_dat=%3Cproquest_pubme%3E1898988707%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898988707&rft_id=info:pmid/26911344&rfr_iscdi=true |