The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR

Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-02, Vol.6 (1), p.21975-21975, Article 21975
Hauptverfasser: Brennan, Sarah C., Wilkinson, William J., Tseng, Hsiu-Er, Finney, Brenda, Monk, Bethan, Dibble, Holly, Quilliam, Samantha, Warburton, David, Galietta, Luis J., Kemp, Paul J., Riccardi, Daniela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21975
container_issue 1
container_start_page 21975
container_title Scientific reports
container_volume 6
creator Brennan, Sarah C.
Wilkinson, William J.
Tseng, Hsiu-Er
Finney, Brenda
Monk, Bethan
Dibble, Holly
Quilliam, Samantha
Warburton, David
Galietta, Luis J.
Kemp, Paul J.
Riccardi, Daniela
description Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl − -driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca 2+ -stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases.
doi_str_mv 10.1038/srep21975
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4766410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898988707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-eb5e7815eedc95d263d6d12895b44ecf8d2e80e6134d89f28e2bcde200ae240c3</originalsourceid><addsrcrecordid>eNplkV9LwzAUxYMoOqYPfgEp-KJCNUmTNnkRZDgVBEHmiy8hTW-3jvSPSTv02xuZjqnJQy7cH-ee3IPQMcGXBCfiyjvoKJEZ30EjihmPaULp7lZ9gI68X-JwOJWMyH10QFNJSMLYCL3OFhDBe--0AWsHq11ktDXVUMceGl8188iBga5vXSjmAejBR4uh1k1UQq9tZIfAFLAC23Y1NH20qnQ0mc6eD9Feqa2Ho-93jF6mt7PJffz4dPcwuXmMDUtEH0POIROEAxRG8oKmSZEWhArJc8bAlKKgIDCkwW8hZEkF0NwUQDHWQBk2yRhdr3W7Ia-DSPDgtFWdq2rtPlSrK_W701QLNW9XimVpysIOx-jsW8C1bwP4XtWV_1qHbqAdvCJZKnhKEy4DevoHXbaDa8L3FBEyXJHhLFDna8q41od8yo0ZgtVXaGoTWmBPtt1vyJ-IAnCxBnxoNXNwWyP_qX0C5Wuibg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898988707</pqid></control><display><type>article</type><title>The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Brennan, Sarah C. ; Wilkinson, William J. ; Tseng, Hsiu-Er ; Finney, Brenda ; Monk, Bethan ; Dibble, Holly ; Quilliam, Samantha ; Warburton, David ; Galietta, Luis J. ; Kemp, Paul J. ; Riccardi, Daniela</creator><creatorcontrib>Brennan, Sarah C. ; Wilkinson, William J. ; Tseng, Hsiu-Er ; Finney, Brenda ; Monk, Bethan ; Dibble, Holly ; Quilliam, Samantha ; Warburton, David ; Galietta, Luis J. ; Kemp, Paul J. ; Riccardi, Daniela</creatorcontrib><description>Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl − -driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca 2+ -stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep21975</identifier><identifier>PMID: 26911344</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 14/1 ; 14/35 ; 14/63 ; 631/136/2060 ; 631/45/612/194 ; 631/80/86/1999 ; 64/60 ; 9/30 ; Adenylyl Cyclases - metabolism ; Animals ; Anoctamin-1 ; Bestrophins ; Calcium ; Calcium (extracellular) ; Calcium-sensing receptors ; Chloride channels ; Chloride channels (calcium-gated) ; Chloride Channels - genetics ; Chloride Channels - metabolism ; Chloride conductance ; Cyclic AMP ; Cystic fibrosis ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Extracellular Space ; Eye Proteins - metabolism ; Fetal Organ Maturity ; Fetus ; Fetuses ; Gene Expression Regulation, Developmental ; Humanities and Social Sciences ; Humans ; Hypercalcemia ; Hypercalcemia - genetics ; Hypercalcemia - metabolism ; Immunohistochemistry ; Ion Channel Gating ; Ion Channels - metabolism ; Lung - embryology ; Lung - metabolism ; Lungs ; Mice ; Models, Biological ; multidisciplinary ; Organogenesis ; Physiology ; Receptors, Calcium-Sensing - metabolism ; Respiratory diseases ; Rodents ; Science ; Secretion</subject><ispartof>Scientific reports, 2016-02, Vol.6 (1), p.21975-21975, Article 21975</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-eb5e7815eedc95d263d6d12895b44ecf8d2e80e6134d89f28e2bcde200ae240c3</citedby><cites>FETCH-LOGICAL-c438t-eb5e7815eedc95d263d6d12895b44ecf8d2e80e6134d89f28e2bcde200ae240c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766410/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766410/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27926,27927,41122,42191,51578,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26911344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brennan, Sarah C.</creatorcontrib><creatorcontrib>Wilkinson, William J.</creatorcontrib><creatorcontrib>Tseng, Hsiu-Er</creatorcontrib><creatorcontrib>Finney, Brenda</creatorcontrib><creatorcontrib>Monk, Bethan</creatorcontrib><creatorcontrib>Dibble, Holly</creatorcontrib><creatorcontrib>Quilliam, Samantha</creatorcontrib><creatorcontrib>Warburton, David</creatorcontrib><creatorcontrib>Galietta, Luis J.</creatorcontrib><creatorcontrib>Kemp, Paul J.</creatorcontrib><creatorcontrib>Riccardi, Daniela</creatorcontrib><title>The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl − -driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca 2+ -stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases.</description><subject>13/1</subject><subject>13/106</subject><subject>14/1</subject><subject>14/35</subject><subject>14/63</subject><subject>631/136/2060</subject><subject>631/45/612/194</subject><subject>631/80/86/1999</subject><subject>64/60</subject><subject>9/30</subject><subject>Adenylyl Cyclases - metabolism</subject><subject>Animals</subject><subject>Anoctamin-1</subject><subject>Bestrophins</subject><subject>Calcium</subject><subject>Calcium (extracellular)</subject><subject>Calcium-sensing receptors</subject><subject>Chloride channels</subject><subject>Chloride channels (calcium-gated)</subject><subject>Chloride Channels - genetics</subject><subject>Chloride Channels - metabolism</subject><subject>Chloride conductance</subject><subject>Cyclic AMP</subject><subject>Cystic fibrosis</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Extracellular Space</subject><subject>Eye Proteins - metabolism</subject><subject>Fetal Organ Maturity</subject><subject>Fetus</subject><subject>Fetuses</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypercalcemia</subject><subject>Hypercalcemia - genetics</subject><subject>Hypercalcemia - metabolism</subject><subject>Immunohistochemistry</subject><subject>Ion Channel Gating</subject><subject>Ion Channels - metabolism</subject><subject>Lung - embryology</subject><subject>Lung - metabolism</subject><subject>Lungs</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Organogenesis</subject><subject>Physiology</subject><subject>Receptors, Calcium-Sensing - metabolism</subject><subject>Respiratory diseases</subject><subject>Rodents</subject><subject>Science</subject><subject>Secretion</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV9LwzAUxYMoOqYPfgEp-KJCNUmTNnkRZDgVBEHmiy8hTW-3jvSPSTv02xuZjqnJQy7cH-ee3IPQMcGXBCfiyjvoKJEZ30EjihmPaULp7lZ9gI68X-JwOJWMyH10QFNJSMLYCL3OFhDBe--0AWsHq11ktDXVUMceGl8188iBga5vXSjmAejBR4uh1k1UQq9tZIfAFLAC23Y1NH20qnQ0mc6eD9Feqa2Ho-93jF6mt7PJffz4dPcwuXmMDUtEH0POIROEAxRG8oKmSZEWhArJc8bAlKKgIDCkwW8hZEkF0NwUQDHWQBk2yRhdr3W7Ia-DSPDgtFWdq2rtPlSrK_W701QLNW9XimVpysIOx-jsW8C1bwP4XtWV_1qHbqAdvCJZKnhKEy4DevoHXbaDa8L3FBEyXJHhLFDna8q41od8yo0ZgtVXaGoTWmBPtt1vyJ-IAnCxBnxoNXNwWyP_qX0C5Wuibg</recordid><startdate>20160225</startdate><enddate>20160225</enddate><creator>Brennan, Sarah C.</creator><creator>Wilkinson, William J.</creator><creator>Tseng, Hsiu-Er</creator><creator>Finney, Brenda</creator><creator>Monk, Bethan</creator><creator>Dibble, Holly</creator><creator>Quilliam, Samantha</creator><creator>Warburton, David</creator><creator>Galietta, Luis J.</creator><creator>Kemp, Paul J.</creator><creator>Riccardi, Daniela</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160225</creationdate><title>The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR</title><author>Brennan, Sarah C. ; Wilkinson, William J. ; Tseng, Hsiu-Er ; Finney, Brenda ; Monk, Bethan ; Dibble, Holly ; Quilliam, Samantha ; Warburton, David ; Galietta, Luis J. ; Kemp, Paul J. ; Riccardi, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-eb5e7815eedc95d263d6d12895b44ecf8d2e80e6134d89f28e2bcde200ae240c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/1</topic><topic>13/106</topic><topic>14/1</topic><topic>14/35</topic><topic>14/63</topic><topic>631/136/2060</topic><topic>631/45/612/194</topic><topic>631/80/86/1999</topic><topic>64/60</topic><topic>9/30</topic><topic>Adenylyl Cyclases - metabolism</topic><topic>Animals</topic><topic>Anoctamin-1</topic><topic>Bestrophins</topic><topic>Calcium</topic><topic>Calcium (extracellular)</topic><topic>Calcium-sensing receptors</topic><topic>Chloride channels</topic><topic>Chloride channels (calcium-gated)</topic><topic>Chloride Channels - genetics</topic><topic>Chloride Channels - metabolism</topic><topic>Chloride conductance</topic><topic>Cyclic AMP</topic><topic>Cystic fibrosis</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Extracellular Space</topic><topic>Eye Proteins - metabolism</topic><topic>Fetal Organ Maturity</topic><topic>Fetus</topic><topic>Fetuses</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypercalcemia</topic><topic>Hypercalcemia - genetics</topic><topic>Hypercalcemia - metabolism</topic><topic>Immunohistochemistry</topic><topic>Ion Channel Gating</topic><topic>Ion Channels - metabolism</topic><topic>Lung - embryology</topic><topic>Lung - metabolism</topic><topic>Lungs</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Organogenesis</topic><topic>Physiology</topic><topic>Receptors, Calcium-Sensing - metabolism</topic><topic>Respiratory diseases</topic><topic>Rodents</topic><topic>Science</topic><topic>Secretion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brennan, Sarah C.</creatorcontrib><creatorcontrib>Wilkinson, William J.</creatorcontrib><creatorcontrib>Tseng, Hsiu-Er</creatorcontrib><creatorcontrib>Finney, Brenda</creatorcontrib><creatorcontrib>Monk, Bethan</creatorcontrib><creatorcontrib>Dibble, Holly</creatorcontrib><creatorcontrib>Quilliam, Samantha</creatorcontrib><creatorcontrib>Warburton, David</creatorcontrib><creatorcontrib>Galietta, Luis J.</creatorcontrib><creatorcontrib>Kemp, Paul J.</creatorcontrib><creatorcontrib>Riccardi, Daniela</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brennan, Sarah C.</au><au>Wilkinson, William J.</au><au>Tseng, Hsiu-Er</au><au>Finney, Brenda</au><au>Monk, Bethan</au><au>Dibble, Holly</au><au>Quilliam, Samantha</au><au>Warburton, David</au><au>Galietta, Luis J.</au><au>Kemp, Paul J.</au><au>Riccardi, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-02-25</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>21975</spage><epage>21975</epage><pages>21975-21975</pages><artnum>21975</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl − -driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca 2+ -stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26911344</pmid><doi>10.1038/srep21975</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-02, Vol.6 (1), p.21975-21975, Article 21975
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4766410
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 13/1
13/106
14/1
14/35
14/63
631/136/2060
631/45/612/194
631/80/86/1999
64/60
9/30
Adenylyl Cyclases - metabolism
Animals
Anoctamin-1
Bestrophins
Calcium
Calcium (extracellular)
Calcium-sensing receptors
Chloride channels
Chloride channels (calcium-gated)
Chloride Channels - genetics
Chloride Channels - metabolism
Chloride conductance
Cyclic AMP
Cystic fibrosis
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Extracellular Space
Eye Proteins - metabolism
Fetal Organ Maturity
Fetus
Fetuses
Gene Expression Regulation, Developmental
Humanities and Social Sciences
Humans
Hypercalcemia
Hypercalcemia - genetics
Hypercalcemia - metabolism
Immunohistochemistry
Ion Channel Gating
Ion Channels - metabolism
Lung - embryology
Lung - metabolism
Lungs
Mice
Models, Biological
multidisciplinary
Organogenesis
Physiology
Receptors, Calcium-Sensing - metabolism
Respiratory diseases
Rodents
Science
Secretion
title The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20extracellular%20calcium-sensing%20receptor%20regulates%20human%20fetal%20lung%20development%20via%20CFTR&rft.jtitle=Scientific%20reports&rft.au=Brennan,%20Sarah%20C.&rft.date=2016-02-25&rft.volume=6&rft.issue=1&rft.spage=21975&rft.epage=21975&rft.pages=21975-21975&rft.artnum=21975&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep21975&rft_dat=%3Cproquest_pubme%3E1898988707%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898988707&rft_id=info:pmid/26911344&rfr_iscdi=true