Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries

In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2015-07, Vol.119 (29), p.9450-9459
Hauptverfasser: Dyer, Kippi M, Perkyns, John S, Pettitt, B. Montgomery
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9459
container_issue 29
container_start_page 9450
container_title The journal of physical chemistry. B
container_volume 119
creator Dyer, Kippi M
Perkyns, John S
Pettitt, B. Montgomery
description In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.
doi_str_mv 10.1021/jp512992n
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4765317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000510964</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-3bdb5c8488f59f3a8e018efc15b7bce902f0092e64222ef3030c098c54f3d6b93</originalsourceid><addsrcrecordid>eNptkU9r3DAQxUVpaTabHvoFii-F5OBmJFu2lEMg5F8bHHJIchayPGq02NJGskPz7euym6WFHoYZmB9vhvcI-UzhGwVGj1drTpmUzL8jC8oZ5HPV77dzRaHaI_sprQAYZ6L6SPYYrxgVki3I433op9b1bnzNGje4MWXOZw16r2OX3wSPKbt1v8YpYjrJLq1FMyPBZhcurXXUI2a3oUcz9ZhdYxhwjA7TAflgdZ_w07YvyePV5cP597y5u_5xftbkuizEmBdt13IjSiEsl7bQAoEKtIbytm4NSmAWQDKsSsYY2gIKMCCF4aUtuqqVxZKcbnTXUztgZ9CPUfdqHd2g46sK2ql_N949qZ_hRZV1xQtazwKHW4EYnidMoxpcMtj32mOYkmIAwCnIqpzRow1qYkgpot2doaD-xKB2Mczsl7__2pFvvs_A1w2gTVKrMEU_2_Qfod81TpAK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000510964</pqid></control><display><type>article</type><title>Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Dyer, Kippi M ; Perkyns, John S ; Pettitt, B. Montgomery</creator><creatorcontrib>Dyer, Kippi M ; Perkyns, John S ; Pettitt, B. Montgomery</creatorcontrib><description>In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp512992n</identifier><identifier>PMID: 25621892</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>chemical elements ; Computer Simulation ; energy ; equations ; Models, Chemical ; nanomaterials ; physical chemistry ; physical phases ; prediction ; Solubility ; Solutions - chemistry ; solvents ; Solvents - chemistry ; Thermodynamics</subject><ispartof>The journal of physical chemistry. B, 2015-07, Vol.119 (29), p.9450-9459</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-3bdb5c8488f59f3a8e018efc15b7bce902f0092e64222ef3030c098c54f3d6b93</citedby><cites>FETCH-LOGICAL-a438t-3bdb5c8488f59f3a8e018efc15b7bce902f0092e64222ef3030c098c54f3d6b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp512992n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp512992n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25621892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dyer, Kippi M</creatorcontrib><creatorcontrib>Perkyns, John S</creatorcontrib><creatorcontrib>Pettitt, B. Montgomery</creatorcontrib><title>Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.</description><subject>chemical elements</subject><subject>Computer Simulation</subject><subject>energy</subject><subject>equations</subject><subject>Models, Chemical</subject><subject>nanomaterials</subject><subject>physical chemistry</subject><subject>physical phases</subject><subject>prediction</subject><subject>Solubility</subject><subject>Solutions - chemistry</subject><subject>solvents</subject><subject>Solvents - chemistry</subject><subject>Thermodynamics</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkU9r3DAQxUVpaTabHvoFii-F5OBmJFu2lEMg5F8bHHJIchayPGq02NJGskPz7euym6WFHoYZmB9vhvcI-UzhGwVGj1drTpmUzL8jC8oZ5HPV77dzRaHaI_sprQAYZ6L6SPYYrxgVki3I433op9b1bnzNGje4MWXOZw16r2OX3wSPKbt1v8YpYjrJLq1FMyPBZhcurXXUI2a3oUcz9ZhdYxhwjA7TAflgdZ_w07YvyePV5cP597y5u_5xftbkuizEmBdt13IjSiEsl7bQAoEKtIbytm4NSmAWQDKsSsYY2gIKMCCF4aUtuqqVxZKcbnTXUztgZ9CPUfdqHd2g46sK2ql_N949qZ_hRZV1xQtazwKHW4EYnidMoxpcMtj32mOYkmIAwCnIqpzRow1qYkgpot2doaD-xKB2Mczsl7__2pFvvs_A1w2gTVKrMEU_2_Qfod81TpAK</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Dyer, Kippi M</creator><creator>Perkyns, John S</creator><creator>Pettitt, B. Montgomery</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150723</creationdate><title>Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries</title><author>Dyer, Kippi M ; Perkyns, John S ; Pettitt, B. Montgomery</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-3bdb5c8488f59f3a8e018efc15b7bce902f0092e64222ef3030c098c54f3d6b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>chemical elements</topic><topic>Computer Simulation</topic><topic>energy</topic><topic>equations</topic><topic>Models, Chemical</topic><topic>nanomaterials</topic><topic>physical chemistry</topic><topic>physical phases</topic><topic>prediction</topic><topic>Solubility</topic><topic>Solutions - chemistry</topic><topic>solvents</topic><topic>Solvents - chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dyer, Kippi M</creatorcontrib><creatorcontrib>Perkyns, John S</creatorcontrib><creatorcontrib>Pettitt, B. Montgomery</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dyer, Kippi M</au><au>Perkyns, John S</au><au>Pettitt, B. Montgomery</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2015-07-23</date><risdate>2015</risdate><volume>119</volume><issue>29</issue><spage>9450</spage><epage>9459</epage><pages>9450-9459</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25621892</pmid><doi>10.1021/jp512992n</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2015-07, Vol.119 (29), p.9450-9459
issn 1520-6106
1520-5207
1520-5207
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4765317
source MEDLINE; American Chemical Society Journals
subjects chemical elements
Computer Simulation
energy
equations
Models, Chemical
nanomaterials
physical chemistry
physical phases
prediction
Solubility
Solutions - chemistry
solvents
Solvents - chemistry
Thermodynamics
title Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solubility%20Limits%20in%20Lennard-Jones%20Mixtures:%20Effects%20of%20Disparate%20Molecule%20Geometries&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Dyer,%20Kippi%20M&rft.date=2015-07-23&rft.volume=119&rft.issue=29&rft.spage=9450&rft.epage=9459&rft.pages=9450-9459&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp512992n&rft_dat=%3Cproquest_pubme%3E2000510964%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000510964&rft_id=info:pmid/25621892&rfr_iscdi=true