Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries
In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC int...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2015-07, Vol.119 (29), p.9450-9459 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9459 |
---|---|
container_issue | 29 |
container_start_page | 9450 |
container_title | The journal of physical chemistry. B |
container_volume | 119 |
creator | Dyer, Kippi M Perkyns, John S Pettitt, B. Montgomery |
description | In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids. |
doi_str_mv | 10.1021/jp512992n |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4765317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000510964</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-3bdb5c8488f59f3a8e018efc15b7bce902f0092e64222ef3030c098c54f3d6b93</originalsourceid><addsrcrecordid>eNptkU9r3DAQxUVpaTabHvoFii-F5OBmJFu2lEMg5F8bHHJIchayPGq02NJGskPz7euym6WFHoYZmB9vhvcI-UzhGwVGj1drTpmUzL8jC8oZ5HPV77dzRaHaI_sprQAYZ6L6SPYYrxgVki3I433op9b1bnzNGje4MWXOZw16r2OX3wSPKbt1v8YpYjrJLq1FMyPBZhcurXXUI2a3oUcz9ZhdYxhwjA7TAflgdZ_w07YvyePV5cP597y5u_5xftbkuizEmBdt13IjSiEsl7bQAoEKtIbytm4NSmAWQDKsSsYY2gIKMCCF4aUtuqqVxZKcbnTXUztgZ9CPUfdqHd2g46sK2ql_N949qZ_hRZV1xQtazwKHW4EYnidMoxpcMtj32mOYkmIAwCnIqpzRow1qYkgpot2doaD-xKB2Mczsl7__2pFvvs_A1w2gTVKrMEU_2_Qfod81TpAK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000510964</pqid></control><display><type>article</type><title>Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Dyer, Kippi M ; Perkyns, John S ; Pettitt, B. Montgomery</creator><creatorcontrib>Dyer, Kippi M ; Perkyns, John S ; Pettitt, B. Montgomery</creatorcontrib><description>In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp512992n</identifier><identifier>PMID: 25621892</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>chemical elements ; Computer Simulation ; energy ; equations ; Models, Chemical ; nanomaterials ; physical chemistry ; physical phases ; prediction ; Solubility ; Solutions - chemistry ; solvents ; Solvents - chemistry ; Thermodynamics</subject><ispartof>The journal of physical chemistry. B, 2015-07, Vol.119 (29), p.9450-9459</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-3bdb5c8488f59f3a8e018efc15b7bce902f0092e64222ef3030c098c54f3d6b93</citedby><cites>FETCH-LOGICAL-a438t-3bdb5c8488f59f3a8e018efc15b7bce902f0092e64222ef3030c098c54f3d6b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp512992n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp512992n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25621892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dyer, Kippi M</creatorcontrib><creatorcontrib>Perkyns, John S</creatorcontrib><creatorcontrib>Pettitt, B. Montgomery</creatorcontrib><title>Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.</description><subject>chemical elements</subject><subject>Computer Simulation</subject><subject>energy</subject><subject>equations</subject><subject>Models, Chemical</subject><subject>nanomaterials</subject><subject>physical chemistry</subject><subject>physical phases</subject><subject>prediction</subject><subject>Solubility</subject><subject>Solutions - chemistry</subject><subject>solvents</subject><subject>Solvents - chemistry</subject><subject>Thermodynamics</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkU9r3DAQxUVpaTabHvoFii-F5OBmJFu2lEMg5F8bHHJIchayPGq02NJGskPz7euym6WFHoYZmB9vhvcI-UzhGwVGj1drTpmUzL8jC8oZ5HPV77dzRaHaI_sprQAYZ6L6SPYYrxgVki3I433op9b1bnzNGje4MWXOZw16r2OX3wSPKbt1v8YpYjrJLq1FMyPBZhcurXXUI2a3oUcz9ZhdYxhwjA7TAflgdZ_w07YvyePV5cP597y5u_5xftbkuizEmBdt13IjSiEsl7bQAoEKtIbytm4NSmAWQDKsSsYY2gIKMCCF4aUtuqqVxZKcbnTXUztgZ9CPUfdqHd2g46sK2ql_N949qZ_hRZV1xQtazwKHW4EYnidMoxpcMtj32mOYkmIAwCnIqpzRow1qYkgpot2doaD-xKB2Mczsl7__2pFvvs_A1w2gTVKrMEU_2_Qfod81TpAK</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Dyer, Kippi M</creator><creator>Perkyns, John S</creator><creator>Pettitt, B. Montgomery</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150723</creationdate><title>Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries</title><author>Dyer, Kippi M ; Perkyns, John S ; Pettitt, B. Montgomery</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-3bdb5c8488f59f3a8e018efc15b7bce902f0092e64222ef3030c098c54f3d6b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>chemical elements</topic><topic>Computer Simulation</topic><topic>energy</topic><topic>equations</topic><topic>Models, Chemical</topic><topic>nanomaterials</topic><topic>physical chemistry</topic><topic>physical phases</topic><topic>prediction</topic><topic>Solubility</topic><topic>Solutions - chemistry</topic><topic>solvents</topic><topic>Solvents - chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dyer, Kippi M</creatorcontrib><creatorcontrib>Perkyns, John S</creatorcontrib><creatorcontrib>Pettitt, B. Montgomery</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dyer, Kippi M</au><au>Perkyns, John S</au><au>Pettitt, B. Montgomery</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2015-07-23</date><risdate>2015</risdate><volume>119</volume><issue>29</issue><spage>9450</spage><epage>9459</epage><pages>9450-9459</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25621892</pmid><doi>10.1021/jp512992n</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2015-07, Vol.119 (29), p.9450-9459 |
issn | 1520-6106 1520-5207 1520-5207 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4765317 |
source | MEDLINE; American Chemical Society Journals |
subjects | chemical elements Computer Simulation energy equations Models, Chemical nanomaterials physical chemistry physical phases prediction Solubility Solutions - chemistry solvents Solvents - chemistry Thermodynamics |
title | Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solubility%20Limits%20in%20Lennard-Jones%20Mixtures:%20Effects%20of%20Disparate%20Molecule%20Geometries&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Dyer,%20Kippi%20M&rft.date=2015-07-23&rft.volume=119&rft.issue=29&rft.spage=9450&rft.epage=9459&rft.pages=9450-9459&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp512992n&rft_dat=%3Cproquest_pubme%3E2000510964%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000510964&rft_id=info:pmid/25621892&rfr_iscdi=true |