Evaluating the Small-World-Ness of a Sampled Network: Functional Connectivity of Entorhinal-Hippocampal Circuitry
The amount of publicly accessible experimental data has gradually increased in recent years, which makes it possible to reconsider many longstanding questions in neuroscience. In this paper, an efficient framework is presented for reconstructing functional connectivity using experimental spike-train...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-02, Vol.6 (1), p.21468-21468, Article 21468 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21468 |
---|---|
container_issue | 1 |
container_start_page | 21468 |
container_title | Scientific reports |
container_volume | 6 |
creator | She, Qi Chen, Guanrong Chan, Rosa H. M. |
description | The amount of publicly accessible experimental data has gradually increased in recent years, which makes it possible to reconsider many longstanding questions in neuroscience. In this paper, an efficient framework is presented for reconstructing functional connectivity using experimental spike-train data. A modified generalized linear model (
GLM
) with L1-norm penalty was used to investigate 10 datasets. These datasets contain spike-train data collected from the entorhinal-hippocampal region in the brains of rats performing different tasks. The analysis shows that entorhinal-hippocampal network of well-trained rats demonstrated significant small-world features. It is found that the connectivity structure generated by distance-dependent models is responsible for the observed small-world features of the reconstructed networks. The models are utilized to simulate a subset of units recorded from a large biological neural network using multiple electrodes. Two metrics for quantifying the small-world-ness both suggest that the reconstructed network from the sampled nodes estimates a more prominent small-world-ness feature than that of the original unknown network when the number of recorded neurons is small. Finally, this study shows that it is feasible to adjust the estimated small-world-ness results based on the number of neurons recorded to provide a more accurate reference of the network property. |
doi_str_mv | 10.1038/srep21468 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4763267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898963660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-a118ca4b3045867f3a094e12580386ea3b1a2e06b3ab2f35fc941a4a6b85cf8d3</originalsourceid><addsrcrecordid>eNplkV9v0zAUxS3ExKaxB74AisQLIAX8J3EcHiahqtuQpvEwpj1aN67Tejh2ZjtF_fZz1VGV4Rfbuj-fe48PQu8I_kIwE19j0CMlFRev0AnFVV1SRunrg_MxOovxAedV07Yi7Rt0THmLaYObE_Q4X4OdIBm3LNJKF7cDWFve-2AX5Y2OsfB9AcUtDKPVi-JGpz8-_P5WXExOJeMd2GLmndP5sjZps6XnLvmwMrlUXplx9Cq_3WImqMmksHmLjnqwUZ8976fo7mL-a3ZVXv-8_DH7fl2qGlepBEKEgqpj2YbgTc8At5UmtBbZNNfAOgJUY94x6GjP6l5lb1AB70SterFgp-h8pztO3aAXSrsUwMoxmAHCRnow8t-KMyu59GtZNZxR3mSBj88CwT9OOiY5mKi0teC0n6IkDW9aUvOGZvTDC_TBTyF_QaZEK1rOOMeZ-rSjVPAxx9bvhyFYbrOU-ywz-_5w-j35N7kMfN4BMZfcUoeDlv-pPQE6Manq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898963660</pqid></control><display><type>article</type><title>Evaluating the Small-World-Ness of a Sampled Network: Functional Connectivity of Entorhinal-Hippocampal Circuitry</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>She, Qi ; Chen, Guanrong ; Chan, Rosa H. M.</creator><creatorcontrib>She, Qi ; Chen, Guanrong ; Chan, Rosa H. M.</creatorcontrib><description>The amount of publicly accessible experimental data has gradually increased in recent years, which makes it possible to reconsider many longstanding questions in neuroscience. In this paper, an efficient framework is presented for reconstructing functional connectivity using experimental spike-train data. A modified generalized linear model (
GLM
) with L1-norm penalty was used to investigate 10 datasets. These datasets contain spike-train data collected from the entorhinal-hippocampal region in the brains of rats performing different tasks. The analysis shows that entorhinal-hippocampal network of well-trained rats demonstrated significant small-world features. It is found that the connectivity structure generated by distance-dependent models is responsible for the observed small-world features of the reconstructed networks. The models are utilized to simulate a subset of units recorded from a large biological neural network using multiple electrodes. Two metrics for quantifying the small-world-ness both suggest that the reconstructed network from the sampled nodes estimates a more prominent small-world-ness feature than that of the original unknown network when the number of recorded neurons is small. Finally, this study shows that it is feasible to adjust the estimated small-world-ness results based on the number of neurons recorded to provide a more accurate reference of the network property.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep21468</identifier><identifier>PMID: 26902707</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/116/1925 ; 639/166/985 ; Action Potentials - physiology ; Animals ; Behavior, Animal - physiology ; Entorhinal Cortex - physiology ; Generalized linear models ; Hippocampus ; Hippocampus - physiology ; Humanities and Social Sciences ; Linear Models ; Models, Neurological ; multidisciplinary ; Nerve Net - physiology ; Nervous system ; Neural networks ; Neurons - physiology ; Nodes ; Rats ; Rodents ; Science</subject><ispartof>Scientific reports, 2016-02, Vol.6 (1), p.21468-21468, Article 21468</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-a118ca4b3045867f3a094e12580386ea3b1a2e06b3ab2f35fc941a4a6b85cf8d3</citedby><cites>FETCH-LOGICAL-c504t-a118ca4b3045867f3a094e12580386ea3b1a2e06b3ab2f35fc941a4a6b85cf8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763267/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763267/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26902707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>She, Qi</creatorcontrib><creatorcontrib>Chen, Guanrong</creatorcontrib><creatorcontrib>Chan, Rosa H. M.</creatorcontrib><title>Evaluating the Small-World-Ness of a Sampled Network: Functional Connectivity of Entorhinal-Hippocampal Circuitry</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The amount of publicly accessible experimental data has gradually increased in recent years, which makes it possible to reconsider many longstanding questions in neuroscience. In this paper, an efficient framework is presented for reconstructing functional connectivity using experimental spike-train data. A modified generalized linear model (
GLM
) with L1-norm penalty was used to investigate 10 datasets. These datasets contain spike-train data collected from the entorhinal-hippocampal region in the brains of rats performing different tasks. The analysis shows that entorhinal-hippocampal network of well-trained rats demonstrated significant small-world features. It is found that the connectivity structure generated by distance-dependent models is responsible for the observed small-world features of the reconstructed networks. The models are utilized to simulate a subset of units recorded from a large biological neural network using multiple electrodes. Two metrics for quantifying the small-world-ness both suggest that the reconstructed network from the sampled nodes estimates a more prominent small-world-ness feature than that of the original unknown network when the number of recorded neurons is small. Finally, this study shows that it is feasible to adjust the estimated small-world-ness results based on the number of neurons recorded to provide a more accurate reference of the network property.</description><subject>631/114/116/1925</subject><subject>639/166/985</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Behavior, Animal - physiology</subject><subject>Entorhinal Cortex - physiology</subject><subject>Generalized linear models</subject><subject>Hippocampus</subject><subject>Hippocampus - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Linear Models</subject><subject>Models, Neurological</subject><subject>multidisciplinary</subject><subject>Nerve Net - physiology</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neurons - physiology</subject><subject>Nodes</subject><subject>Rats</subject><subject>Rodents</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV9v0zAUxS3ExKaxB74AisQLIAX8J3EcHiahqtuQpvEwpj1aN67Tejh2ZjtF_fZz1VGV4Rfbuj-fe48PQu8I_kIwE19j0CMlFRev0AnFVV1SRunrg_MxOovxAedV07Yi7Rt0THmLaYObE_Q4X4OdIBm3LNJKF7cDWFve-2AX5Y2OsfB9AcUtDKPVi-JGpz8-_P5WXExOJeMd2GLmndP5sjZps6XnLvmwMrlUXplx9Cq_3WImqMmksHmLjnqwUZ8976fo7mL-a3ZVXv-8_DH7fl2qGlepBEKEgqpj2YbgTc8At5UmtBbZNNfAOgJUY94x6GjP6l5lb1AB70SterFgp-h8pztO3aAXSrsUwMoxmAHCRnow8t-KMyu59GtZNZxR3mSBj88CwT9OOiY5mKi0teC0n6IkDW9aUvOGZvTDC_TBTyF_QaZEK1rOOMeZ-rSjVPAxx9bvhyFYbrOU-ywz-_5w-j35N7kMfN4BMZfcUoeDlv-pPQE6Manq</recordid><startdate>20160223</startdate><enddate>20160223</enddate><creator>She, Qi</creator><creator>Chen, Guanrong</creator><creator>Chan, Rosa H. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160223</creationdate><title>Evaluating the Small-World-Ness of a Sampled Network: Functional Connectivity of Entorhinal-Hippocampal Circuitry</title><author>She, Qi ; Chen, Guanrong ; Chan, Rosa H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-a118ca4b3045867f3a094e12580386ea3b1a2e06b3ab2f35fc941a4a6b85cf8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/114/116/1925</topic><topic>639/166/985</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Behavior, Animal - physiology</topic><topic>Entorhinal Cortex - physiology</topic><topic>Generalized linear models</topic><topic>Hippocampus</topic><topic>Hippocampus - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Linear Models</topic><topic>Models, Neurological</topic><topic>multidisciplinary</topic><topic>Nerve Net - physiology</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neurons - physiology</topic><topic>Nodes</topic><topic>Rats</topic><topic>Rodents</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>She, Qi</creatorcontrib><creatorcontrib>Chen, Guanrong</creatorcontrib><creatorcontrib>Chan, Rosa H. M.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>She, Qi</au><au>Chen, Guanrong</au><au>Chan, Rosa H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the Small-World-Ness of a Sampled Network: Functional Connectivity of Entorhinal-Hippocampal Circuitry</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-02-23</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>21468</spage><epage>21468</epage><pages>21468-21468</pages><artnum>21468</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The amount of publicly accessible experimental data has gradually increased in recent years, which makes it possible to reconsider many longstanding questions in neuroscience. In this paper, an efficient framework is presented for reconstructing functional connectivity using experimental spike-train data. A modified generalized linear model (
GLM
) with L1-norm penalty was used to investigate 10 datasets. These datasets contain spike-train data collected from the entorhinal-hippocampal region in the brains of rats performing different tasks. The analysis shows that entorhinal-hippocampal network of well-trained rats demonstrated significant small-world features. It is found that the connectivity structure generated by distance-dependent models is responsible for the observed small-world features of the reconstructed networks. The models are utilized to simulate a subset of units recorded from a large biological neural network using multiple electrodes. Two metrics for quantifying the small-world-ness both suggest that the reconstructed network from the sampled nodes estimates a more prominent small-world-ness feature than that of the original unknown network when the number of recorded neurons is small. Finally, this study shows that it is feasible to adjust the estimated small-world-ness results based on the number of neurons recorded to provide a more accurate reference of the network property.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26902707</pmid><doi>10.1038/srep21468</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-02, Vol.6 (1), p.21468-21468, Article 21468 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4763267 |
source | Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 631/114/116/1925 639/166/985 Action Potentials - physiology Animals Behavior, Animal - physiology Entorhinal Cortex - physiology Generalized linear models Hippocampus Hippocampus - physiology Humanities and Social Sciences Linear Models Models, Neurological multidisciplinary Nerve Net - physiology Nervous system Neural networks Neurons - physiology Nodes Rats Rodents Science |
title | Evaluating the Small-World-Ness of a Sampled Network: Functional Connectivity of Entorhinal-Hippocampal Circuitry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20Small-World-Ness%20of%20a%20Sampled%20Network:%20Functional%20Connectivity%20of%20Entorhinal-Hippocampal%20Circuitry&rft.jtitle=Scientific%20reports&rft.au=She,%20Qi&rft.date=2016-02-23&rft.volume=6&rft.issue=1&rft.spage=21468&rft.epage=21468&rft.pages=21468-21468&rft.artnum=21468&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep21468&rft_dat=%3Cproquest_pubme%3E1898963660%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898963660&rft_id=info:pmid/26902707&rfr_iscdi=true |