High-accuracy imputation for HLA class I and II genes based on high-resolution SNP data of population-specific references

Statistical imputation of classical human leukocyte antigen ( HLA ) alleles is becoming an indispensable tool for fine-mappings of disease association signals from case–control genome-wide association studies. However, most currently available HLA imputation tools are based on European reference pop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The pharmacogenomics journal 2015-12, Vol.15 (6), p.530-537
Hauptverfasser: Khor, S-S, Yang, W, Kawashima, M, Kamitsuji, S, Zheng, X, Nishida, N, Sawai, H, Toyoda, H, Miyagawa, T, Honda, M, Kamatani, N, Tokunaga, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 537
container_issue 6
container_start_page 530
container_title The pharmacogenomics journal
container_volume 15
creator Khor, S-S
Yang, W
Kawashima, M
Kamitsuji, S
Zheng, X
Nishida, N
Sawai, H
Toyoda, H
Miyagawa, T
Honda, M
Kamatani, N
Tokunaga, K
description Statistical imputation of classical human leukocyte antigen ( HLA ) alleles is becoming an indispensable tool for fine-mappings of disease association signals from case–control genome-wide association studies. However, most currently available HLA imputation tools are based on European reference populations and are not suitable for direct application to non-European populations. Among the HLA imputation tools, The HIBAG R package is a flexible HLA imputation tool that is equipped with a wide range of population-based classifiers; moreover, HIBAG R enables individual researchers to build custom classifiers. Here, two data sets, each comprising data from healthy Japanese individuals of difference sample sizes, were used to build custom classifiers. HLA imputation accuracy in five HLA classes ( HLA-A , HLA-B , HLA-DRB1 , HLA-DQB1 and HLA-DPB1 ) increased from the 82.5–98.8% obtained with the original HIBAG references to 95.2–99.5% with our custom classifiers. A call threshold (CT) of 0.4 is recommended for our Japanese classifiers; in contrast, HIBAG references recommend a CT of 0.5. Finally, our classifiers could be used to identify the risk haplotypes for Japanese narcolepsy with cataplexy, HLA-DRB1*15:01 and HLA-DQB1*06:02 , with 100% and 99.7% accuracy, respectively; therefore, these classifiers can be used to supplement the current lack of HLA genotyping data in widely available genome-wide association study data sets.
doi_str_mv 10.1038/tpj.2015.4
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4762906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A435795386</galeid><sourcerecordid>A435795386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c678t-c65136a90ce8adf1604347cd671a4b3bbe0474d0dee5902ad112612e2dfdfd843</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhgdR3A-98QdIwBtZmZpMvmZuhLKoLRQVVPAupMmZNmWajMmM0H9vpl3XXfVCDiQh53lfTk5OUTwjeEYwrV8P_W5WYcJn7EFxTpikJSEcPzyecVmJ5ttZcZHSDmMiiKwfF2cVl1jShp8Xh4XbbEttzBi1OSC378dBDy541IaIFqs5Mp1OCS2R9hYtl2gDHhJa6wQWZWo7ySOk0I1H1ecPn5DVg0ahRX3ox-5oVqYejGudQRFaiOANpCfFo1Z3CZ7e7JfF13dvv1wvytXH98vr-ao0QtZDXjmhQjfYQK1tSwRmlEljhSSarel6DZhJZrEF4A2utCWkEqSCyrY5akYvizcn335c78Ea8EPUneqj2-t4UEE7dT_j3VZtwg_FpKgaLLLByxuDGL6PkAa1d8lA12kPYUyKSMEb2TDB_wOlnNJM1xl98Qe6C2P0uRMTxWpWU9r8pja6A-V8G3KJZjJVc0a5bDitpwpn_6ByWNg7Ezy0Lt_fE1ydBCaGlPKf3LaDYDXNlMozpaaZUlMDn99t4C36a4gy8OoEpJzyG4h3nvK33U99INVL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734848339</pqid></control><display><type>article</type><title>High-accuracy imputation for HLA class I and II genes based on high-resolution SNP data of population-specific references</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Khor, S-S ; Yang, W ; Kawashima, M ; Kamitsuji, S ; Zheng, X ; Nishida, N ; Sawai, H ; Toyoda, H ; Miyagawa, T ; Honda, M ; Kamatani, N ; Tokunaga, K</creator><creatorcontrib>Khor, S-S ; Yang, W ; Kawashima, M ; Kamitsuji, S ; Zheng, X ; Nishida, N ; Sawai, H ; Toyoda, H ; Miyagawa, T ; Honda, M ; Kamatani, N ; Tokunaga, K</creatorcontrib><description>Statistical imputation of classical human leukocyte antigen ( HLA ) alleles is becoming an indispensable tool for fine-mappings of disease association signals from case–control genome-wide association studies. However, most currently available HLA imputation tools are based on European reference populations and are not suitable for direct application to non-European populations. Among the HLA imputation tools, The HIBAG R package is a flexible HLA imputation tool that is equipped with a wide range of population-based classifiers; moreover, HIBAG R enables individual researchers to build custom classifiers. Here, two data sets, each comprising data from healthy Japanese individuals of difference sample sizes, were used to build custom classifiers. HLA imputation accuracy in five HLA classes ( HLA-A , HLA-B , HLA-DRB1 , HLA-DQB1 and HLA-DPB1 ) increased from the 82.5–98.8% obtained with the original HIBAG references to 95.2–99.5% with our custom classifiers. A call threshold (CT) of 0.4 is recommended for our Japanese classifiers; in contrast, HIBAG references recommend a CT of 0.5. Finally, our classifiers could be used to identify the risk haplotypes for Japanese narcolepsy with cataplexy, HLA-DRB1*15:01 and HLA-DQB1*06:02 , with 100% and 99.7% accuracy, respectively; therefore, these classifiers can be used to supplement the current lack of HLA genotyping data in widely available genome-wide association study data sets.</description><identifier>ISSN: 1470-269X</identifier><identifier>EISSN: 1473-1150</identifier><identifier>DOI: 10.1038/tpj.2015.4</identifier><identifier>PMID: 25707395</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/43 ; 631/114 ; Alleles ; Analysis ; Asian Continental Ancestry Group - genetics ; Biomedical and Life Sciences ; Biomedicine ; Case-Control Studies ; European Continental Ancestry Group - genetics ; Gene Expression ; Gene Frequency - genetics ; Genetic aspects ; Genome-Wide Association Study - methods ; Genotype ; Histocompatibility antigens ; Histocompatibility Antigens Class I - genetics ; Histocompatibility Antigens Class II - genetics ; HLA histocompatibility antigens ; Human Genetics ; Humans ; Linkage Disequilibrium - genetics ; Oncology ; Original ; original-article ; Pharmacogenetics ; Pharmacotherapy ; Polymorphism, Single Nucleotide - genetics ; Psychopharmacology ; Single nucleotide polymorphisms</subject><ispartof>The pharmacogenomics journal, 2015-12, Vol.15 (6), p.530-537</ispartof><rights>The Author(s) 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2015</rights><rights>Copyright © 2015 Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c678t-c65136a90ce8adf1604347cd671a4b3bbe0474d0dee5902ad112612e2dfdfd843</citedby><cites>FETCH-LOGICAL-c678t-c65136a90ce8adf1604347cd671a4b3bbe0474d0dee5902ad112612e2dfdfd843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25707395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khor, S-S</creatorcontrib><creatorcontrib>Yang, W</creatorcontrib><creatorcontrib>Kawashima, M</creatorcontrib><creatorcontrib>Kamitsuji, S</creatorcontrib><creatorcontrib>Zheng, X</creatorcontrib><creatorcontrib>Nishida, N</creatorcontrib><creatorcontrib>Sawai, H</creatorcontrib><creatorcontrib>Toyoda, H</creatorcontrib><creatorcontrib>Miyagawa, T</creatorcontrib><creatorcontrib>Honda, M</creatorcontrib><creatorcontrib>Kamatani, N</creatorcontrib><creatorcontrib>Tokunaga, K</creatorcontrib><title>High-accuracy imputation for HLA class I and II genes based on high-resolution SNP data of population-specific references</title><title>The pharmacogenomics journal</title><addtitle>Pharmacogenomics J</addtitle><addtitle>Pharmacogenomics J</addtitle><description>Statistical imputation of classical human leukocyte antigen ( HLA ) alleles is becoming an indispensable tool for fine-mappings of disease association signals from case–control genome-wide association studies. However, most currently available HLA imputation tools are based on European reference populations and are not suitable for direct application to non-European populations. Among the HLA imputation tools, The HIBAG R package is a flexible HLA imputation tool that is equipped with a wide range of population-based classifiers; moreover, HIBAG R enables individual researchers to build custom classifiers. Here, two data sets, each comprising data from healthy Japanese individuals of difference sample sizes, were used to build custom classifiers. HLA imputation accuracy in five HLA classes ( HLA-A , HLA-B , HLA-DRB1 , HLA-DQB1 and HLA-DPB1 ) increased from the 82.5–98.8% obtained with the original HIBAG references to 95.2–99.5% with our custom classifiers. A call threshold (CT) of 0.4 is recommended for our Japanese classifiers; in contrast, HIBAG references recommend a CT of 0.5. Finally, our classifiers could be used to identify the risk haplotypes for Japanese narcolepsy with cataplexy, HLA-DRB1*15:01 and HLA-DQB1*06:02 , with 100% and 99.7% accuracy, respectively; therefore, these classifiers can be used to supplement the current lack of HLA genotyping data in widely available genome-wide association study data sets.</description><subject>45/43</subject><subject>631/114</subject><subject>Alleles</subject><subject>Analysis</subject><subject>Asian Continental Ancestry Group - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Case-Control Studies</subject><subject>European Continental Ancestry Group - genetics</subject><subject>Gene Expression</subject><subject>Gene Frequency - genetics</subject><subject>Genetic aspects</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genotype</subject><subject>Histocompatibility antigens</subject><subject>Histocompatibility Antigens Class I - genetics</subject><subject>Histocompatibility Antigens Class II - genetics</subject><subject>HLA histocompatibility antigens</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Linkage Disequilibrium - genetics</subject><subject>Oncology</subject><subject>Original</subject><subject>original-article</subject><subject>Pharmacogenetics</subject><subject>Pharmacotherapy</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Psychopharmacology</subject><subject>Single nucleotide polymorphisms</subject><issn>1470-269X</issn><issn>1473-1150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkl2LEzEUhgdR3A-98QdIwBtZmZpMvmZuhLKoLRQVVPAupMmZNmWajMmM0H9vpl3XXfVCDiQh53lfTk5OUTwjeEYwrV8P_W5WYcJn7EFxTpikJSEcPzyecVmJ5ttZcZHSDmMiiKwfF2cVl1jShp8Xh4XbbEttzBi1OSC378dBDy541IaIFqs5Mp1OCS2R9hYtl2gDHhJa6wQWZWo7ySOk0I1H1ecPn5DVg0ahRX3ox-5oVqYejGudQRFaiOANpCfFo1Z3CZ7e7JfF13dvv1wvytXH98vr-ao0QtZDXjmhQjfYQK1tSwRmlEljhSSarel6DZhJZrEF4A2utCWkEqSCyrY5akYvizcn335c78Ea8EPUneqj2-t4UEE7dT_j3VZtwg_FpKgaLLLByxuDGL6PkAa1d8lA12kPYUyKSMEb2TDB_wOlnNJM1xl98Qe6C2P0uRMTxWpWU9r8pja6A-V8G3KJZjJVc0a5bDitpwpn_6ByWNg7Ezy0Lt_fE1ydBCaGlPKf3LaDYDXNlMozpaaZUlMDn99t4C36a4gy8OoEpJzyG4h3nvK33U99INVL</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Khor, S-S</creator><creator>Yang, W</creator><creator>Kawashima, M</creator><creator>Kamitsuji, S</creator><creator>Zheng, X</creator><creator>Nishida, N</creator><creator>Sawai, H</creator><creator>Toyoda, H</creator><creator>Miyagawa, T</creator><creator>Honda, M</creator><creator>Kamatani, N</creator><creator>Tokunaga, K</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151201</creationdate><title>High-accuracy imputation for HLA class I and II genes based on high-resolution SNP data of population-specific references</title><author>Khor, S-S ; Yang, W ; Kawashima, M ; Kamitsuji, S ; Zheng, X ; Nishida, N ; Sawai, H ; Toyoda, H ; Miyagawa, T ; Honda, M ; Kamatani, N ; Tokunaga, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c678t-c65136a90ce8adf1604347cd671a4b3bbe0474d0dee5902ad112612e2dfdfd843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>45/43</topic><topic>631/114</topic><topic>Alleles</topic><topic>Analysis</topic><topic>Asian Continental Ancestry Group - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Case-Control Studies</topic><topic>European Continental Ancestry Group - genetics</topic><topic>Gene Expression</topic><topic>Gene Frequency - genetics</topic><topic>Genetic aspects</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genotype</topic><topic>Histocompatibility antigens</topic><topic>Histocompatibility Antigens Class I - genetics</topic><topic>Histocompatibility Antigens Class II - genetics</topic><topic>HLA histocompatibility antigens</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Linkage Disequilibrium - genetics</topic><topic>Oncology</topic><topic>Original</topic><topic>original-article</topic><topic>Pharmacogenetics</topic><topic>Pharmacotherapy</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Psychopharmacology</topic><topic>Single nucleotide polymorphisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khor, S-S</creatorcontrib><creatorcontrib>Yang, W</creatorcontrib><creatorcontrib>Kawashima, M</creatorcontrib><creatorcontrib>Kamitsuji, S</creatorcontrib><creatorcontrib>Zheng, X</creatorcontrib><creatorcontrib>Nishida, N</creatorcontrib><creatorcontrib>Sawai, H</creatorcontrib><creatorcontrib>Toyoda, H</creatorcontrib><creatorcontrib>Miyagawa, T</creatorcontrib><creatorcontrib>Honda, M</creatorcontrib><creatorcontrib>Kamatani, N</creatorcontrib><creatorcontrib>Tokunaga, K</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The pharmacogenomics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khor, S-S</au><au>Yang, W</au><au>Kawashima, M</au><au>Kamitsuji, S</au><au>Zheng, X</au><au>Nishida, N</au><au>Sawai, H</au><au>Toyoda, H</au><au>Miyagawa, T</au><au>Honda, M</au><au>Kamatani, N</au><au>Tokunaga, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-accuracy imputation for HLA class I and II genes based on high-resolution SNP data of population-specific references</atitle><jtitle>The pharmacogenomics journal</jtitle><stitle>Pharmacogenomics J</stitle><addtitle>Pharmacogenomics J</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>15</volume><issue>6</issue><spage>530</spage><epage>537</epage><pages>530-537</pages><issn>1470-269X</issn><eissn>1473-1150</eissn><abstract>Statistical imputation of classical human leukocyte antigen ( HLA ) alleles is becoming an indispensable tool for fine-mappings of disease association signals from case–control genome-wide association studies. However, most currently available HLA imputation tools are based on European reference populations and are not suitable for direct application to non-European populations. Among the HLA imputation tools, The HIBAG R package is a flexible HLA imputation tool that is equipped with a wide range of population-based classifiers; moreover, HIBAG R enables individual researchers to build custom classifiers. Here, two data sets, each comprising data from healthy Japanese individuals of difference sample sizes, were used to build custom classifiers. HLA imputation accuracy in five HLA classes ( HLA-A , HLA-B , HLA-DRB1 , HLA-DQB1 and HLA-DPB1 ) increased from the 82.5–98.8% obtained with the original HIBAG references to 95.2–99.5% with our custom classifiers. A call threshold (CT) of 0.4 is recommended for our Japanese classifiers; in contrast, HIBAG references recommend a CT of 0.5. Finally, our classifiers could be used to identify the risk haplotypes for Japanese narcolepsy with cataplexy, HLA-DRB1*15:01 and HLA-DQB1*06:02 , with 100% and 99.7% accuracy, respectively; therefore, these classifiers can be used to supplement the current lack of HLA genotyping data in widely available genome-wide association study data sets.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25707395</pmid><doi>10.1038/tpj.2015.4</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1470-269X
ispartof The pharmacogenomics journal, 2015-12, Vol.15 (6), p.530-537
issn 1470-269X
1473-1150
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4762906
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 45/43
631/114
Alleles
Analysis
Asian Continental Ancestry Group - genetics
Biomedical and Life Sciences
Biomedicine
Case-Control Studies
European Continental Ancestry Group - genetics
Gene Expression
Gene Frequency - genetics
Genetic aspects
Genome-Wide Association Study - methods
Genotype
Histocompatibility antigens
Histocompatibility Antigens Class I - genetics
Histocompatibility Antigens Class II - genetics
HLA histocompatibility antigens
Human Genetics
Humans
Linkage Disequilibrium - genetics
Oncology
Original
original-article
Pharmacogenetics
Pharmacotherapy
Polymorphism, Single Nucleotide - genetics
Psychopharmacology
Single nucleotide polymorphisms
title High-accuracy imputation for HLA class I and II genes based on high-resolution SNP data of population-specific references
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-accuracy%20imputation%20for%20HLA%20class%20I%20and%20II%20genes%20based%20on%20high-resolution%20SNP%20data%20of%20population-specific%20references&rft.jtitle=The%20pharmacogenomics%20journal&rft.au=Khor,%20S-S&rft.date=2015-12-01&rft.volume=15&rft.issue=6&rft.spage=530&rft.epage=537&rft.pages=530-537&rft.issn=1470-269X&rft.eissn=1473-1150&rft_id=info:doi/10.1038/tpj.2015.4&rft_dat=%3Cgale_pubme%3EA435795386%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734848339&rft_id=info:pmid/25707395&rft_galeid=A435795386&rfr_iscdi=true