Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene

This study evaluated the effects of a trehalolipid biosurfactant produced by Rhodococcus ruber IEGM 231 on the bacterial adhesion and biofilm formation on the surface of polystyrene microplates. The adhesion of Gram-positive ( Arthrobacter simplex , Bacillus subtilis , Brevibacterium linens , Coryne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMB Express 2016-02, Vol.6 (1), p.14-14, Article 14
Hauptverfasser: Kuyukina, Maria S., Ivshina, Irena B., Korshunova, Irina O., Stukova, Galina I., Krivoruchko, Anastasiya V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 14
container_title AMB Express
container_volume 6
creator Kuyukina, Maria S.
Ivshina, Irena B.
Korshunova, Irina O.
Stukova, Galina I.
Krivoruchko, Anastasiya V.
description This study evaluated the effects of a trehalolipid biosurfactant produced by Rhodococcus ruber IEGM 231 on the bacterial adhesion and biofilm formation on the surface of polystyrene microplates. The adhesion of Gram-positive ( Arthrobacter simplex , Bacillus subtilis , Brevibacterium linens , Corynebacterium glutamicum , Micrococcus luteus ) and Gram-negative ( Escherichia coli , Pseudomonas fluorescencens ) bacteria correlated differently with the cell hydrophobicity and surface charge. In particular, exponentially growing bacterial cells with increased hydrophobicities adhered stronger to polystyrene compared to more hydrophilic stationary phase cells. Also, a moderate correlation (0.56) was found between zeta potential and adhesion values of actively growing bacteria, suggesting that less negatively charged cells adhered stronger to polystyrene. Efficient biosurfactant concentrations (10–100 mg/L) were determined, which selectively inhibited (up to 76 %) the adhesion of tested bacterial cultures, however without inhibiting their growth. The biosurfactant was more active against growing bacteria rather than resting cells, thus showing high biofilm-preventing properties. Contact angle measurements revealed more hydrophilic surface of the biosurfactant-covered polystyrene compared to bare polystyrene, which allowed less adhesion of hydrophobic bacteria. Furthermore, surface free-energy calculations showed a decrease in the Wan der Waals (γ LW ) component and an increase in the acid-based (γ AB ) component caused by the biosurfactant coating of polysterene. However, our results suggested that the biosurfactant inhibited the adhesion of bacteria independently on their surface charges. AFM scanning revealed three-type biosurfactant structures (micelles, cord-like assemblies and large vesicles) formed on glass, depending on concentrations used, that could lead to diverse anti-adhesive effects against different bacterial species.
doi_str_mv 10.1186/s13568-016-0186-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4759446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4160386301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-8b3eb248e5e62b2ccca9d6960d74c254e3d80eb3a064a81e00acae1bf19df9b33</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbGn7A7yRgDfeTM33ZG4EqbUWWoRSr0OSOdmdMpusSaayvfOfN8vWsgqCgZATznPefJy3ad4QfEqIkh8yYUKqFhNZp5Ltw4vmkJKetFgJ8XIvPmhOcr7DdQiMeyleNwdUKqUoZofNr8_jPaQMCLwHVzKKHhlkx5jn5I0rJhTkU1yhm2UcoovOzRml2UJCl-cX14gygmJAZQnIDEvIY91UiQS5jGGBTBjQIsWf29hWOUijQSWidZw2uWwSBDhuXnkzZTh5Wo-a71_Ob8--tlffLi7PPl21TmBWWmUZWMoVCJDUUuec6QfZSzx03FHBgQ0Kg2UGS24UAYyNM0CsJ_3ge8vYUfNxp7ue7QoGB6EkM-l1GlcmbXQ0o_4zE8alXsR7zTvRcy6rwPsngRR_zPWBejVmB9NkAsQ5a9IpLKjABP8HKjvcUdXxir77C72Lcwr1JzRRhFPe1Z5Viuwol2LOCfzzvQnWWzvonR10tYPe2kE_1Jq3-w9-rvjd_ArQHZBrKiwg7R39T9VHGKnCZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814247096</pqid></control><display><type>article</type><title>Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>SpringerLink Journals - AutoHoldings</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Kuyukina, Maria S. ; Ivshina, Irena B. ; Korshunova, Irina O. ; Stukova, Galina I. ; Krivoruchko, Anastasiya V.</creator><creatorcontrib>Kuyukina, Maria S. ; Ivshina, Irena B. ; Korshunova, Irina O. ; Stukova, Galina I. ; Krivoruchko, Anastasiya V.</creatorcontrib><description>This study evaluated the effects of a trehalolipid biosurfactant produced by Rhodococcus ruber IEGM 231 on the bacterial adhesion and biofilm formation on the surface of polystyrene microplates. The adhesion of Gram-positive ( Arthrobacter simplex , Bacillus subtilis , Brevibacterium linens , Corynebacterium glutamicum , Micrococcus luteus ) and Gram-negative ( Escherichia coli , Pseudomonas fluorescencens ) bacteria correlated differently with the cell hydrophobicity and surface charge. In particular, exponentially growing bacterial cells with increased hydrophobicities adhered stronger to polystyrene compared to more hydrophilic stationary phase cells. Also, a moderate correlation (0.56) was found between zeta potential and adhesion values of actively growing bacteria, suggesting that less negatively charged cells adhered stronger to polystyrene. Efficient biosurfactant concentrations (10–100 mg/L) were determined, which selectively inhibited (up to 76 %) the adhesion of tested bacterial cultures, however without inhibiting their growth. The biosurfactant was more active against growing bacteria rather than resting cells, thus showing high biofilm-preventing properties. Contact angle measurements revealed more hydrophilic surface of the biosurfactant-covered polystyrene compared to bare polystyrene, which allowed less adhesion of hydrophobic bacteria. Furthermore, surface free-energy calculations showed a decrease in the Wan der Waals (γ LW ) component and an increase in the acid-based (γ AB ) component caused by the biosurfactant coating of polysterene. However, our results suggested that the biosurfactant inhibited the adhesion of bacteria independently on their surface charges. AFM scanning revealed three-type biosurfactant structures (micelles, cord-like assemblies and large vesicles) formed on glass, depending on concentrations used, that could lead to diverse anti-adhesive effects against different bacterial species.</description><identifier>ISSN: 2191-0855</identifier><identifier>EISSN: 2191-0855</identifier><identifier>DOI: 10.1186/s13568-016-0186-z</identifier><identifier>PMID: 26888203</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Arthrobacter simplex ; Bacillus subtilis ; Biomedical and Life Sciences ; Biotechnology ; Brevibacterium linens ; Corynebacterium glutamicum ; Escherichia coli ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Micrococcus luteus ; Original ; Original Article ; Pseudomonas ; Rhodococcus ruber</subject><ispartof>AMB Express, 2016-02, Vol.6 (1), p.14-14, Article 14</ispartof><rights>Kuyukina et al. 2016</rights><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-8b3eb248e5e62b2ccca9d6960d74c254e3d80eb3a064a81e00acae1bf19df9b33</citedby><cites>FETCH-LOGICAL-c503t-8b3eb248e5e62b2ccca9d6960d74c254e3d80eb3a064a81e00acae1bf19df9b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759446/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759446/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,41464,42165,42533,51294,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26888203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuyukina, Maria S.</creatorcontrib><creatorcontrib>Ivshina, Irena B.</creatorcontrib><creatorcontrib>Korshunova, Irina O.</creatorcontrib><creatorcontrib>Stukova, Galina I.</creatorcontrib><creatorcontrib>Krivoruchko, Anastasiya V.</creatorcontrib><title>Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene</title><title>AMB Express</title><addtitle>AMB Expr</addtitle><addtitle>AMB Express</addtitle><description>This study evaluated the effects of a trehalolipid biosurfactant produced by Rhodococcus ruber IEGM 231 on the bacterial adhesion and biofilm formation on the surface of polystyrene microplates. The adhesion of Gram-positive ( Arthrobacter simplex , Bacillus subtilis , Brevibacterium linens , Corynebacterium glutamicum , Micrococcus luteus ) and Gram-negative ( Escherichia coli , Pseudomonas fluorescencens ) bacteria correlated differently with the cell hydrophobicity and surface charge. In particular, exponentially growing bacterial cells with increased hydrophobicities adhered stronger to polystyrene compared to more hydrophilic stationary phase cells. Also, a moderate correlation (0.56) was found between zeta potential and adhesion values of actively growing bacteria, suggesting that less negatively charged cells adhered stronger to polystyrene. Efficient biosurfactant concentrations (10–100 mg/L) were determined, which selectively inhibited (up to 76 %) the adhesion of tested bacterial cultures, however without inhibiting their growth. The biosurfactant was more active against growing bacteria rather than resting cells, thus showing high biofilm-preventing properties. Contact angle measurements revealed more hydrophilic surface of the biosurfactant-covered polystyrene compared to bare polystyrene, which allowed less adhesion of hydrophobic bacteria. Furthermore, surface free-energy calculations showed a decrease in the Wan der Waals (γ LW ) component and an increase in the acid-based (γ AB ) component caused by the biosurfactant coating of polysterene. However, our results suggested that the biosurfactant inhibited the adhesion of bacteria independently on their surface charges. AFM scanning revealed three-type biosurfactant structures (micelles, cord-like assemblies and large vesicles) formed on glass, depending on concentrations used, that could lead to diverse anti-adhesive effects against different bacterial species.</description><subject>Arthrobacter simplex</subject><subject>Bacillus subtilis</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Brevibacterium linens</subject><subject>Corynebacterium glutamicum</subject><subject>Escherichia coli</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Micrococcus luteus</subject><subject>Original</subject><subject>Original Article</subject><subject>Pseudomonas</subject><subject>Rhodococcus ruber</subject><issn>2191-0855</issn><issn>2191-0855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkl1rFDEUhgdRbGn7A7yRgDfeTM33ZG4EqbUWWoRSr0OSOdmdMpusSaayvfOfN8vWsgqCgZATznPefJy3ad4QfEqIkh8yYUKqFhNZp5Ltw4vmkJKetFgJ8XIvPmhOcr7DdQiMeyleNwdUKqUoZofNr8_jPaQMCLwHVzKKHhlkx5jn5I0rJhTkU1yhm2UcoovOzRml2UJCl-cX14gygmJAZQnIDEvIY91UiQS5jGGBTBjQIsWf29hWOUijQSWidZw2uWwSBDhuXnkzZTh5Wo-a71_Ob8--tlffLi7PPl21TmBWWmUZWMoVCJDUUuec6QfZSzx03FHBgQ0Kg2UGS24UAYyNM0CsJ_3ge8vYUfNxp7ue7QoGB6EkM-l1GlcmbXQ0o_4zE8alXsR7zTvRcy6rwPsngRR_zPWBejVmB9NkAsQ5a9IpLKjABP8HKjvcUdXxir77C72Lcwr1JzRRhFPe1Z5Viuwol2LOCfzzvQnWWzvonR10tYPe2kE_1Jq3-w9-rvjd_ArQHZBrKiwg7R39T9VHGKnCZA</recordid><startdate>20160218</startdate><enddate>20160218</enddate><creator>Kuyukina, Maria S.</creator><creator>Ivshina, Irena B.</creator><creator>Korshunova, Irina O.</creator><creator>Stukova, Galina I.</creator><creator>Krivoruchko, Anastasiya V.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20160218</creationdate><title>Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene</title><author>Kuyukina, Maria S. ; Ivshina, Irena B. ; Korshunova, Irina O. ; Stukova, Galina I. ; Krivoruchko, Anastasiya V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-8b3eb248e5e62b2ccca9d6960d74c254e3d80eb3a064a81e00acae1bf19df9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arthrobacter simplex</topic><topic>Bacillus subtilis</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Brevibacterium linens</topic><topic>Corynebacterium glutamicum</topic><topic>Escherichia coli</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Micrococcus luteus</topic><topic>Original</topic><topic>Original Article</topic><topic>Pseudomonas</topic><topic>Rhodococcus ruber</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuyukina, Maria S.</creatorcontrib><creatorcontrib>Ivshina, Irena B.</creatorcontrib><creatorcontrib>Korshunova, Irina O.</creatorcontrib><creatorcontrib>Stukova, Galina I.</creatorcontrib><creatorcontrib>Krivoruchko, Anastasiya V.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMB Express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuyukina, Maria S.</au><au>Ivshina, Irena B.</au><au>Korshunova, Irina O.</au><au>Stukova, Galina I.</au><au>Krivoruchko, Anastasiya V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene</atitle><jtitle>AMB Express</jtitle><stitle>AMB Expr</stitle><addtitle>AMB Express</addtitle><date>2016-02-18</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>14</spage><epage>14</epage><pages>14-14</pages><artnum>14</artnum><issn>2191-0855</issn><eissn>2191-0855</eissn><abstract>This study evaluated the effects of a trehalolipid biosurfactant produced by Rhodococcus ruber IEGM 231 on the bacterial adhesion and biofilm formation on the surface of polystyrene microplates. The adhesion of Gram-positive ( Arthrobacter simplex , Bacillus subtilis , Brevibacterium linens , Corynebacterium glutamicum , Micrococcus luteus ) and Gram-negative ( Escherichia coli , Pseudomonas fluorescencens ) bacteria correlated differently with the cell hydrophobicity and surface charge. In particular, exponentially growing bacterial cells with increased hydrophobicities adhered stronger to polystyrene compared to more hydrophilic stationary phase cells. Also, a moderate correlation (0.56) was found between zeta potential and adhesion values of actively growing bacteria, suggesting that less negatively charged cells adhered stronger to polystyrene. Efficient biosurfactant concentrations (10–100 mg/L) were determined, which selectively inhibited (up to 76 %) the adhesion of tested bacterial cultures, however without inhibiting their growth. The biosurfactant was more active against growing bacteria rather than resting cells, thus showing high biofilm-preventing properties. Contact angle measurements revealed more hydrophilic surface of the biosurfactant-covered polystyrene compared to bare polystyrene, which allowed less adhesion of hydrophobic bacteria. Furthermore, surface free-energy calculations showed a decrease in the Wan der Waals (γ LW ) component and an increase in the acid-based (γ AB ) component caused by the biosurfactant coating of polysterene. However, our results suggested that the biosurfactant inhibited the adhesion of bacteria independently on their surface charges. AFM scanning revealed three-type biosurfactant structures (micelles, cord-like assemblies and large vesicles) formed on glass, depending on concentrations used, that could lead to diverse anti-adhesive effects against different bacterial species.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26888203</pmid><doi>10.1186/s13568-016-0186-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2191-0855
ispartof AMB Express, 2016-02, Vol.6 (1), p.14-14, Article 14
issn 2191-0855
2191-0855
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4759446
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; SpringerLink Journals - AutoHoldings; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Arthrobacter simplex
Bacillus subtilis
Biomedical and Life Sciences
Biotechnology
Brevibacterium linens
Corynebacterium glutamicum
Escherichia coli
Life Sciences
Microbial Genetics and Genomics
Microbiology
Micrococcus luteus
Original
Original Article
Pseudomonas
Rhodococcus ruber
title Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20effects%20of%20a%20biosurfactant%20from%20Rhodococcus%20ruber%20IEGM%20231%20on%20the%20adhesion%20of%20resting%20and%20growing%20bacteria%20to%20polystyrene&rft.jtitle=AMB%20Express&rft.au=Kuyukina,%20Maria%20S.&rft.date=2016-02-18&rft.volume=6&rft.issue=1&rft.spage=14&rft.epage=14&rft.pages=14-14&rft.artnum=14&rft.issn=2191-0855&rft.eissn=2191-0855&rft_id=info:doi/10.1186/s13568-016-0186-z&rft_dat=%3Cproquest_pubme%3E4160386301%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814247096&rft_id=info:pmid/26888203&rfr_iscdi=true