Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging

To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-02, Vol.6 (1), p.21247, Article 21247
Hauptverfasser: Kobayashi, Takuma, Haruta, Makito, Sasagawa, Kiyotaka, Matsumata, Miho, Eizumi, Kawori, Kitsumoto, Chikara, Motoyama, Mayumi, Maezawa, Yasuyo, Ohta, Yasumi, Noda, Toshihiko, Tokuda, Takashi, Ishikawa, Yasuyuki, Ohta, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 21247
container_title Scientific reports
container_volume 6
creator Kobayashi, Takuma
Haruta, Makito
Sasagawa, Kiyotaka
Matsumata, Miho
Eizumi, Kawori
Kitsumoto, Chikara
Motoyama, Mayumi
Maezawa, Yasuyo
Ohta, Yasumi
Noda, Toshihiko
Tokuda, Takashi
Ishikawa, Yasuyuki
Ohta, Jun
description To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca 2+ indicator. The device succeeded in activating cells locally by selective photostimulation and the physiological Ca 2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging.
doi_str_mv 10.1038/srep21247
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4754641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898960017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-53e8c6410398ce69d54adf92e46f4c858b69f2654fec37db1cfd9c999aa769e3</originalsourceid><addsrcrecordid>eNplkU1L7TAQhoNcUVEX_oOAK5Vqk6ZtshEuB79AcOM-pMmkRtqkJq3XA_54I0dEudlkYJ555-NF6IiU56Ss-EWKMFFCWbuF9mjJ6oJWlP75Ee-iw5Sey_xqKhgRO2iXNrzlgpR76P1hmp1WA9ZhHBefw9kFj_-5-Ql3UTmPNQxDwt0aj6B8wsFi5bEbp0H5GQw2yzTAGx6djqEw8Oo0bKrDNIcePGT5lEsMXil6hu2whBjcqHrn-wO0bdWQ4PDr30eP11ePq9vi_uHmbvX3vtAVoXNRV8B1w_K2gmtohKmZMlZQYI1lmte8a4SlTc0s6Ko1HdHWCC2EUKptBFT76HIjOy3dCEaDn6Ma5BTzGHEtg3Lyd8a7J9mHV8namuW-WeD4SyCGlwXSLJ_DEn0eWRIuuGjKkrSZOtlQ-RIpu2K_O5BSflolv63K7OmGTZnxPcQfiv_BH5BRlqo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898960017</pqid></control><display><type>article</type><title>Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kobayashi, Takuma ; Haruta, Makito ; Sasagawa, Kiyotaka ; Matsumata, Miho ; Eizumi, Kawori ; Kitsumoto, Chikara ; Motoyama, Mayumi ; Maezawa, Yasuyo ; Ohta, Yasumi ; Noda, Toshihiko ; Tokuda, Takashi ; Ishikawa, Yasuyuki ; Ohta, Jun</creator><creatorcontrib>Kobayashi, Takuma ; Haruta, Makito ; Sasagawa, Kiyotaka ; Matsumata, Miho ; Eizumi, Kawori ; Kitsumoto, Chikara ; Motoyama, Mayumi ; Maezawa, Yasuyo ; Ohta, Yasumi ; Noda, Toshihiko ; Tokuda, Takashi ; Ishikawa, Yasuyuki ; Ohta, Jun</creatorcontrib><description>To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca 2+ indicator. The device succeeded in activating cells locally by selective photostimulation and the physiological Ca 2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep21247</identifier><identifier>PMID: 26878910</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/106 ; 13/109 ; 14/63 ; 631/1647/2253 ; 639/166/985 ; 64/60 ; Brain ; Calcium imaging ; Calcium signalling ; Extracellular matrix ; Gene transfer ; Genetics ; Humanities and Social Sciences ; Information processing ; multidisciplinary ; Nerves ; Nervous system ; Neuroimaging ; Optics ; Prosthetics ; Science ; Transplantation</subject><ispartof>Scientific reports, 2016-02, Vol.6 (1), p.21247, Article 21247</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-53e8c6410398ce69d54adf92e46f4c858b69f2654fec37db1cfd9c999aa769e3</citedby><cites>FETCH-LOGICAL-c312t-53e8c6410398ce69d54adf92e46f4c858b69f2654fec37db1cfd9c999aa769e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754641/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754641/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids></links><search><creatorcontrib>Kobayashi, Takuma</creatorcontrib><creatorcontrib>Haruta, Makito</creatorcontrib><creatorcontrib>Sasagawa, Kiyotaka</creatorcontrib><creatorcontrib>Matsumata, Miho</creatorcontrib><creatorcontrib>Eizumi, Kawori</creatorcontrib><creatorcontrib>Kitsumoto, Chikara</creatorcontrib><creatorcontrib>Motoyama, Mayumi</creatorcontrib><creatorcontrib>Maezawa, Yasuyo</creatorcontrib><creatorcontrib>Ohta, Yasumi</creatorcontrib><creatorcontrib>Noda, Toshihiko</creatorcontrib><creatorcontrib>Tokuda, Takashi</creatorcontrib><creatorcontrib>Ishikawa, Yasuyuki</creatorcontrib><creatorcontrib>Ohta, Jun</creatorcontrib><title>Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca 2+ indicator. The device succeeded in activating cells locally by selective photostimulation and the physiological Ca 2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging.</description><subject>13</subject><subject>13/106</subject><subject>13/109</subject><subject>14/63</subject><subject>631/1647/2253</subject><subject>639/166/985</subject><subject>64/60</subject><subject>Brain</subject><subject>Calcium imaging</subject><subject>Calcium signalling</subject><subject>Extracellular matrix</subject><subject>Gene transfer</subject><subject>Genetics</subject><subject>Humanities and Social Sciences</subject><subject>Information processing</subject><subject>multidisciplinary</subject><subject>Nerves</subject><subject>Nervous system</subject><subject>Neuroimaging</subject><subject>Optics</subject><subject>Prosthetics</subject><subject>Science</subject><subject>Transplantation</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU1L7TAQhoNcUVEX_oOAK5Vqk6ZtshEuB79AcOM-pMmkRtqkJq3XA_54I0dEudlkYJ555-NF6IiU56Ss-EWKMFFCWbuF9mjJ6oJWlP75Ee-iw5Sey_xqKhgRO2iXNrzlgpR76P1hmp1WA9ZhHBefw9kFj_-5-Ql3UTmPNQxDwt0aj6B8wsFi5bEbp0H5GQw2yzTAGx6djqEw8Oo0bKrDNIcePGT5lEsMXil6hu2whBjcqHrn-wO0bdWQ4PDr30eP11ePq9vi_uHmbvX3vtAVoXNRV8B1w_K2gmtohKmZMlZQYI1lmte8a4SlTc0s6Ko1HdHWCC2EUKptBFT76HIjOy3dCEaDn6Ma5BTzGHEtg3Lyd8a7J9mHV8namuW-WeD4SyCGlwXSLJ_DEn0eWRIuuGjKkrSZOtlQ-RIpu2K_O5BSflolv63K7OmGTZnxPcQfiv_BH5BRlqo</recordid><startdate>20160216</startdate><enddate>20160216</enddate><creator>Kobayashi, Takuma</creator><creator>Haruta, Makito</creator><creator>Sasagawa, Kiyotaka</creator><creator>Matsumata, Miho</creator><creator>Eizumi, Kawori</creator><creator>Kitsumoto, Chikara</creator><creator>Motoyama, Mayumi</creator><creator>Maezawa, Yasuyo</creator><creator>Ohta, Yasumi</creator><creator>Noda, Toshihiko</creator><creator>Tokuda, Takashi</creator><creator>Ishikawa, Yasuyuki</creator><creator>Ohta, Jun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20160216</creationdate><title>Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging</title><author>Kobayashi, Takuma ; Haruta, Makito ; Sasagawa, Kiyotaka ; Matsumata, Miho ; Eizumi, Kawori ; Kitsumoto, Chikara ; Motoyama, Mayumi ; Maezawa, Yasuyo ; Ohta, Yasumi ; Noda, Toshihiko ; Tokuda, Takashi ; Ishikawa, Yasuyuki ; Ohta, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-53e8c6410398ce69d54adf92e46f4c858b69f2654fec37db1cfd9c999aa769e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13</topic><topic>13/106</topic><topic>13/109</topic><topic>14/63</topic><topic>631/1647/2253</topic><topic>639/166/985</topic><topic>64/60</topic><topic>Brain</topic><topic>Calcium imaging</topic><topic>Calcium signalling</topic><topic>Extracellular matrix</topic><topic>Gene transfer</topic><topic>Genetics</topic><topic>Humanities and Social Sciences</topic><topic>Information processing</topic><topic>multidisciplinary</topic><topic>Nerves</topic><topic>Nervous system</topic><topic>Neuroimaging</topic><topic>Optics</topic><topic>Prosthetics</topic><topic>Science</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Takuma</creatorcontrib><creatorcontrib>Haruta, Makito</creatorcontrib><creatorcontrib>Sasagawa, Kiyotaka</creatorcontrib><creatorcontrib>Matsumata, Miho</creatorcontrib><creatorcontrib>Eizumi, Kawori</creatorcontrib><creatorcontrib>Kitsumoto, Chikara</creatorcontrib><creatorcontrib>Motoyama, Mayumi</creatorcontrib><creatorcontrib>Maezawa, Yasuyo</creatorcontrib><creatorcontrib>Ohta, Yasumi</creatorcontrib><creatorcontrib>Noda, Toshihiko</creatorcontrib><creatorcontrib>Tokuda, Takashi</creatorcontrib><creatorcontrib>Ishikawa, Yasuyuki</creatorcontrib><creatorcontrib>Ohta, Jun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Takuma</au><au>Haruta, Makito</au><au>Sasagawa, Kiyotaka</au><au>Matsumata, Miho</au><au>Eizumi, Kawori</au><au>Kitsumoto, Chikara</au><au>Motoyama, Mayumi</au><au>Maezawa, Yasuyo</au><au>Ohta, Yasumi</au><au>Noda, Toshihiko</au><au>Tokuda, Takashi</au><au>Ishikawa, Yasuyuki</au><au>Ohta, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2016-02-16</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>21247</spage><pages>21247-</pages><artnum>21247</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca 2+ indicator. The device succeeded in activating cells locally by selective photostimulation and the physiological Ca 2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26878910</pmid><doi>10.1038/srep21247</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-02, Vol.6 (1), p.21247, Article 21247
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4754641
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 13
13/106
13/109
14/63
631/1647/2253
639/166/985
64/60
Brain
Calcium imaging
Calcium signalling
Extracellular matrix
Gene transfer
Genetics
Humanities and Social Sciences
Information processing
multidisciplinary
Nerves
Nervous system
Neuroimaging
Optics
Prosthetics
Science
Transplantation
title Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20communication%20with%20brain%20cells%20by%20means%20of%20an%20implanted%20duplex%20micro-device%20with%20optogenetics%20and%20Ca2+%20fluoroimaging&rft.jtitle=Scientific%20reports&rft.au=Kobayashi,%20Takuma&rft.date=2016-02-16&rft.volume=6&rft.issue=1&rft.spage=21247&rft.pages=21247-&rft.artnum=21247&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep21247&rft_dat=%3Cproquest_pubme%3E1898960017%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898960017&rft_id=info:pmid/26878910&rfr_iscdi=true