Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications
Gerton Lunter and colleagues report Platypus software, which combines a haplotype-based multi-sample variant caller with local sequence assembly in a Bayesian statistical framework. They demonstrate applications to exome and whole-genome data sets, to the identification de novo mutations in parent-o...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2014-08, Vol.46 (8), p.912-918 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 918 |
---|---|
container_issue | 8 |
container_start_page | 912 |
container_title | Nature genetics |
container_volume | 46 |
creator | Rimmer, Andy Phan, Hang Mathieson, Iain Iqbal, Zamin Twigg, Stephen R F Wilkie, Andrew O M McVean, Gil Lunter, Gerton |
description | Gerton Lunter and colleagues report Platypus software, which combines a haplotype-based multi-sample variant caller with local sequence assembly in a Bayesian statistical framework. They demonstrate applications to exome and whole-genome data sets, to the identification
de novo
mutations in parent-offspring trios and to the genotyping of HLA loci.
High-throughput DNA sequencing technology has transformed genetic research and is starting to make an impact on clinical practice. However, analyzing high-throughput sequencing data remains challenging, particularly in clinical settings where accuracy and turnaround times are critical. We present a new approach to this problem, implemented in a software package called Platypus. Platypus achieves high sensitivity and specificity for SNPs, indels and complex polymorphisms by using local
de novo
assembly to generate candidate variants, followed by local realignment and probabilistic haplotype estimation. It is an order of magnitude faster than existing tools and generates calls from raw aligned read data without preprocessing. We demonstrate the performance of Platypus in clinically relevant experimental designs by comparing with SAMtools and GATK on whole-genome and exome-capture data, by identifying
de novo
variation in 15 parent-offspring trios with high sensitivity and specificity, and by estimating human leukocyte antigen genotypes directly from variant calls. |
doi_str_mv | 10.1038/ng.3036 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4753679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A380747836</galeid><sourcerecordid>A380747836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c664t-ae1c447954f5175ccc3a1f0913290a7e1b9a4a47f6bae0616a9e09ee90f9ce23</originalsourceid><addsrcrecordid>eNqNkt9rFDEQxxdRbK3ifyALPqjQPZNL9kdehFLUHhQKWnwNc7nZvZRssia71fvvnaW17RUfJA8TZj7zHebLZNlrzhacieaj7xaCiepJdshLWRW85s1T-rOKF5LyB9mLlK4Y41Ky5nl2sCwZIaw8zH6t_IhdhNH6Lu9hGCgWxzmkhP3a7Yoc_CbfwuDCuBuwWEPCTU5YDGC2mPI2xNyAc3P7NUQLfky59bmhjKVCnvDnhN7MdWpzlBtt8Oll9qwFl_DVbTzKLr98vjw9K84vvq5OT84LU1VyLAC5kbJWpWxLXpfGGAG8ZYqLpWJQI18rkCDrtloD0rYVKGQKUbFWGVyKo-zTjewwrXvcGPRjBKeHaHuIOx3A6v2Kt1vdhWst61JUtSKB97cCMdAiadS9TQadA49hSprsVpUQoplnvX2EXoUpetqOqJKrRnKu7qkOHGrr20BzzSyqT0TDalk3oiJq8Q-K3gZ7a4LH1lJ-r-HDXgMxI_4eO5hS0qvv3_6fvfixz767YU0MKUVs77zjTM-np32n59Mj8s1Dq--4v7d2b2Wiku8wPvDnkdYfB5DgjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551984119</pqid></control><display><type>article</type><title>Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Rimmer, Andy ; Phan, Hang ; Mathieson, Iain ; Iqbal, Zamin ; Twigg, Stephen R F ; Wilkie, Andrew O M ; McVean, Gil ; Lunter, Gerton</creator><creatorcontrib>Rimmer, Andy ; Phan, Hang ; Mathieson, Iain ; Iqbal, Zamin ; Twigg, Stephen R F ; Wilkie, Andrew O M ; McVean, Gil ; Lunter, Gerton ; WGS500 Consortium</creatorcontrib><description>Gerton Lunter and colleagues report Platypus software, which combines a haplotype-based multi-sample variant caller with local sequence assembly in a Bayesian statistical framework. They demonstrate applications to exome and whole-genome data sets, to the identification
de novo
mutations in parent-offspring trios and to the genotyping of HLA loci.
High-throughput DNA sequencing technology has transformed genetic research and is starting to make an impact on clinical practice. However, analyzing high-throughput sequencing data remains challenging, particularly in clinical settings where accuracy and turnaround times are critical. We present a new approach to this problem, implemented in a software package called Platypus. Platypus achieves high sensitivity and specificity for SNPs, indels and complex polymorphisms by using local
de novo
assembly to generate candidate variants, followed by local realignment and probabilistic haplotype estimation. It is an order of magnitude faster than existing tools and generates calls from raw aligned read data without preprocessing. We demonstrate the performance of Platypus in clinically relevant experimental designs by comparing with SAMtools and GATK on whole-genome and exome-capture data, by identifying
de novo
variation in 15 parent-offspring trios with high sensitivity and specificity, and by estimating human leukocyte antigen genotypes directly from variant calls.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng.3036</identifier><identifier>PMID: 25017105</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>45 ; 631/114/2785 ; 631/208/514/1948 ; 692/308/2056 ; 692/700/228/2050/1512 ; Agriculture ; Algorithms ; Animal Genetics and Genomics ; Aquatic mammals ; Biomedical research ; Biomedicine ; Cancer Research ; Candidates ; Chromosome Mapping - methods ; DNA sequencing ; Exome ; Gene Function ; Genetic aspects ; Genome, Human ; Genomes ; Genomic Structural Variation ; Genotype ; Genotypes ; Haplotypes ; High-Throughput Nucleotide Sequencing - methods ; HLA Antigens - genetics ; Human Genetics ; Humans ; Medical research ; Methods ; Mutation ; Nucleotide sequencing ; Offspring ; Platypus ; Polymorphism, Single Nucleotide ; Sensitivity and Specificity ; Sequence Analysis, DNA - methods ; Single nucleotide polymorphisms ; Software ; technical-report</subject><ispartof>Nature genetics, 2014-08, Vol.46 (8), p.912-918</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c664t-ae1c447954f5175ccc3a1f0913290a7e1b9a4a47f6bae0616a9e09ee90f9ce23</citedby><cites>FETCH-LOGICAL-c664t-ae1c447954f5175ccc3a1f0913290a7e1b9a4a47f6bae0616a9e09ee90f9ce23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng.3036$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng.3036$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25017105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rimmer, Andy</creatorcontrib><creatorcontrib>Phan, Hang</creatorcontrib><creatorcontrib>Mathieson, Iain</creatorcontrib><creatorcontrib>Iqbal, Zamin</creatorcontrib><creatorcontrib>Twigg, Stephen R F</creatorcontrib><creatorcontrib>Wilkie, Andrew O M</creatorcontrib><creatorcontrib>McVean, Gil</creatorcontrib><creatorcontrib>Lunter, Gerton</creatorcontrib><creatorcontrib>WGS500 Consortium</creatorcontrib><title>Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Gerton Lunter and colleagues report Platypus software, which combines a haplotype-based multi-sample variant caller with local sequence assembly in a Bayesian statistical framework. They demonstrate applications to exome and whole-genome data sets, to the identification
de novo
mutations in parent-offspring trios and to the genotyping of HLA loci.
High-throughput DNA sequencing technology has transformed genetic research and is starting to make an impact on clinical practice. However, analyzing high-throughput sequencing data remains challenging, particularly in clinical settings where accuracy and turnaround times are critical. We present a new approach to this problem, implemented in a software package called Platypus. Platypus achieves high sensitivity and specificity for SNPs, indels and complex polymorphisms by using local
de novo
assembly to generate candidate variants, followed by local realignment and probabilistic haplotype estimation. It is an order of magnitude faster than existing tools and generates calls from raw aligned read data without preprocessing. We demonstrate the performance of Platypus in clinically relevant experimental designs by comparing with SAMtools and GATK on whole-genome and exome-capture data, by identifying
de novo
variation in 15 parent-offspring trios with high sensitivity and specificity, and by estimating human leukocyte antigen genotypes directly from variant calls.</description><subject>45</subject><subject>631/114/2785</subject><subject>631/208/514/1948</subject><subject>692/308/2056</subject><subject>692/700/228/2050/1512</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Animal Genetics and Genomics</subject><subject>Aquatic mammals</subject><subject>Biomedical research</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Candidates</subject><subject>Chromosome Mapping - methods</subject><subject>DNA sequencing</subject><subject>Exome</subject><subject>Gene Function</subject><subject>Genetic aspects</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Genomic Structural Variation</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Haplotypes</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>HLA Antigens - genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Medical research</subject><subject>Methods</subject><subject>Mutation</subject><subject>Nucleotide sequencing</subject><subject>Offspring</subject><subject>Platypus</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Sensitivity and Specificity</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Single nucleotide polymorphisms</subject><subject>Software</subject><subject>technical-report</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkt9rFDEQxxdRbK3ifyALPqjQPZNL9kdehFLUHhQKWnwNc7nZvZRssia71fvvnaW17RUfJA8TZj7zHebLZNlrzhacieaj7xaCiepJdshLWRW85s1T-rOKF5LyB9mLlK4Y41Ky5nl2sCwZIaw8zH6t_IhdhNH6Lu9hGCgWxzmkhP3a7Yoc_CbfwuDCuBuwWEPCTU5YDGC2mPI2xNyAc3P7NUQLfky59bmhjKVCnvDnhN7MdWpzlBtt8Oll9qwFl_DVbTzKLr98vjw9K84vvq5OT84LU1VyLAC5kbJWpWxLXpfGGAG8ZYqLpWJQI18rkCDrtloD0rYVKGQKUbFWGVyKo-zTjewwrXvcGPRjBKeHaHuIOx3A6v2Kt1vdhWst61JUtSKB97cCMdAiadS9TQadA49hSprsVpUQoplnvX2EXoUpetqOqJKrRnKu7qkOHGrr20BzzSyqT0TDalk3oiJq8Q-K3gZ7a4LH1lJ-r-HDXgMxI_4eO5hS0qvv3_6fvfixz767YU0MKUVs77zjTM-np32n59Mj8s1Dq--4v7d2b2Wiku8wPvDnkdYfB5DgjQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Rimmer, Andy</creator><creator>Phan, Hang</creator><creator>Mathieson, Iain</creator><creator>Iqbal, Zamin</creator><creator>Twigg, Stephen R F</creator><creator>Wilkie, Andrew O M</creator><creator>McVean, Gil</creator><creator>Lunter, Gerton</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140801</creationdate><title>Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications</title><author>Rimmer, Andy ; Phan, Hang ; Mathieson, Iain ; Iqbal, Zamin ; Twigg, Stephen R F ; Wilkie, Andrew O M ; McVean, Gil ; Lunter, Gerton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c664t-ae1c447954f5175ccc3a1f0913290a7e1b9a4a47f6bae0616a9e09ee90f9ce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>45</topic><topic>631/114/2785</topic><topic>631/208/514/1948</topic><topic>692/308/2056</topic><topic>692/700/228/2050/1512</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Animal Genetics and Genomics</topic><topic>Aquatic mammals</topic><topic>Biomedical research</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Candidates</topic><topic>Chromosome Mapping - methods</topic><topic>DNA sequencing</topic><topic>Exome</topic><topic>Gene Function</topic><topic>Genetic aspects</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Genomic Structural Variation</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Haplotypes</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>HLA Antigens - genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Medical research</topic><topic>Methods</topic><topic>Mutation</topic><topic>Nucleotide sequencing</topic><topic>Offspring</topic><topic>Platypus</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Sensitivity and Specificity</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Single nucleotide polymorphisms</topic><topic>Software</topic><topic>technical-report</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rimmer, Andy</creatorcontrib><creatorcontrib>Phan, Hang</creatorcontrib><creatorcontrib>Mathieson, Iain</creatorcontrib><creatorcontrib>Iqbal, Zamin</creatorcontrib><creatorcontrib>Twigg, Stephen R F</creatorcontrib><creatorcontrib>Wilkie, Andrew O M</creatorcontrib><creatorcontrib>McVean, Gil</creatorcontrib><creatorcontrib>Lunter, Gerton</creatorcontrib><creatorcontrib>WGS500 Consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rimmer, Andy</au><au>Phan, Hang</au><au>Mathieson, Iain</au><au>Iqbal, Zamin</au><au>Twigg, Stephen R F</au><au>Wilkie, Andrew O M</au><au>McVean, Gil</au><au>Lunter, Gerton</au><aucorp>WGS500 Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>46</volume><issue>8</issue><spage>912</spage><epage>918</epage><pages>912-918</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Gerton Lunter and colleagues report Platypus software, which combines a haplotype-based multi-sample variant caller with local sequence assembly in a Bayesian statistical framework. They demonstrate applications to exome and whole-genome data sets, to the identification
de novo
mutations in parent-offspring trios and to the genotyping of HLA loci.
High-throughput DNA sequencing technology has transformed genetic research and is starting to make an impact on clinical practice. However, analyzing high-throughput sequencing data remains challenging, particularly in clinical settings where accuracy and turnaround times are critical. We present a new approach to this problem, implemented in a software package called Platypus. Platypus achieves high sensitivity and specificity for SNPs, indels and complex polymorphisms by using local
de novo
assembly to generate candidate variants, followed by local realignment and probabilistic haplotype estimation. It is an order of magnitude faster than existing tools and generates calls from raw aligned read data without preprocessing. We demonstrate the performance of Platypus in clinically relevant experimental designs by comparing with SAMtools and GATK on whole-genome and exome-capture data, by identifying
de novo
variation in 15 parent-offspring trios with high sensitivity and specificity, and by estimating human leukocyte antigen genotypes directly from variant calls.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25017105</pmid><doi>10.1038/ng.3036</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2014-08, Vol.46 (8), p.912-918 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4753679 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 45 631/114/2785 631/208/514/1948 692/308/2056 692/700/228/2050/1512 Agriculture Algorithms Animal Genetics and Genomics Aquatic mammals Biomedical research Biomedicine Cancer Research Candidates Chromosome Mapping - methods DNA sequencing Exome Gene Function Genetic aspects Genome, Human Genomes Genomic Structural Variation Genotype Genotypes Haplotypes High-Throughput Nucleotide Sequencing - methods HLA Antigens - genetics Human Genetics Humans Medical research Methods Mutation Nucleotide sequencing Offspring Platypus Polymorphism, Single Nucleotide Sensitivity and Specificity Sequence Analysis, DNA - methods Single nucleotide polymorphisms Software technical-report |
title | Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20mapping-,%20assembly-%20and%20haplotype-based%20approaches%20for%20calling%20variants%20in%20clinical%20sequencing%20applications&rft.jtitle=Nature%20genetics&rft.au=Rimmer,%20Andy&rft.aucorp=WGS500%20Consortium&rft.date=2014-08-01&rft.volume=46&rft.issue=8&rft.spage=912&rft.epage=918&rft.pages=912-918&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/ng.3036&rft_dat=%3Cgale_pubme%3EA380747836%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551984119&rft_id=info:pmid/25017105&rft_galeid=A380747836&rfr_iscdi=true |