Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications

Gerton Lunter and colleagues report Platypus software, which combines a haplotype-based multi-sample variant caller with local sequence assembly in a Bayesian statistical framework. They demonstrate applications to exome and whole-genome data sets, to the identification de novo mutations in parent-o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2014-08, Vol.46 (8), p.912-918
Hauptverfasser: Rimmer, Andy, Phan, Hang, Mathieson, Iain, Iqbal, Zamin, Twigg, Stephen R F, Wilkie, Andrew O M, McVean, Gil, Lunter, Gerton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 918
container_issue 8
container_start_page 912
container_title Nature genetics
container_volume 46
creator Rimmer, Andy
Phan, Hang
Mathieson, Iain
Iqbal, Zamin
Twigg, Stephen R F
Wilkie, Andrew O M
McVean, Gil
Lunter, Gerton
description Gerton Lunter and colleagues report Platypus software, which combines a haplotype-based multi-sample variant caller with local sequence assembly in a Bayesian statistical framework. They demonstrate applications to exome and whole-genome data sets, to the identification de novo mutations in parent-offspring trios and to the genotyping of HLA loci. High-throughput DNA sequencing technology has transformed genetic research and is starting to make an impact on clinical practice. However, analyzing high-throughput sequencing data remains challenging, particularly in clinical settings where accuracy and turnaround times are critical. We present a new approach to this problem, implemented in a software package called Platypus. Platypus achieves high sensitivity and specificity for SNPs, indels and complex polymorphisms by using local de novo assembly to generate candidate variants, followed by local realignment and probabilistic haplotype estimation. It is an order of magnitude faster than existing tools and generates calls from raw aligned read data without preprocessing. We demonstrate the performance of Platypus in clinically relevant experimental designs by comparing with SAMtools and GATK on whole-genome and exome-capture data, by identifying de novo variation in 15 parent-offspring trios with high sensitivity and specificity, and by estimating human leukocyte antigen genotypes directly from variant calls.
doi_str_mv 10.1038/ng.3036
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4753679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A380747836</galeid><sourcerecordid>A380747836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c664t-ae1c447954f5175ccc3a1f0913290a7e1b9a4a47f6bae0616a9e09ee90f9ce23</originalsourceid><addsrcrecordid>eNqNkt9rFDEQxxdRbK3ifyALPqjQPZNL9kdehFLUHhQKWnwNc7nZvZRssia71fvvnaW17RUfJA8TZj7zHebLZNlrzhacieaj7xaCiepJdshLWRW85s1T-rOKF5LyB9mLlK4Y41Ky5nl2sCwZIaw8zH6t_IhdhNH6Lu9hGCgWxzmkhP3a7Yoc_CbfwuDCuBuwWEPCTU5YDGC2mPI2xNyAc3P7NUQLfky59bmhjKVCnvDnhN7MdWpzlBtt8Oll9qwFl_DVbTzKLr98vjw9K84vvq5OT84LU1VyLAC5kbJWpWxLXpfGGAG8ZYqLpWJQI18rkCDrtloD0rYVKGQKUbFWGVyKo-zTjewwrXvcGPRjBKeHaHuIOx3A6v2Kt1vdhWst61JUtSKB97cCMdAiadS9TQadA49hSprsVpUQoplnvX2EXoUpetqOqJKrRnKu7qkOHGrr20BzzSyqT0TDalk3oiJq8Q-K3gZ7a4LH1lJ-r-HDXgMxI_4eO5hS0qvv3_6fvfixz767YU0MKUVs77zjTM-np32n59Mj8s1Dq--4v7d2b2Wiku8wPvDnkdYfB5DgjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551984119</pqid></control><display><type>article</type><title>Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Rimmer, Andy ; Phan, Hang ; Mathieson, Iain ; Iqbal, Zamin ; Twigg, Stephen R F ; Wilkie, Andrew O M ; McVean, Gil ; Lunter, Gerton</creator><creatorcontrib>Rimmer, Andy ; Phan, Hang ; Mathieson, Iain ; Iqbal, Zamin ; Twigg, Stephen R F ; Wilkie, Andrew O M ; McVean, Gil ; Lunter, Gerton ; WGS500 Consortium</creatorcontrib><description>Gerton Lunter and colleagues report Platypus software, which combines a haplotype-based multi-sample variant caller with local sequence assembly in a Bayesian statistical framework. They demonstrate applications to exome and whole-genome data sets, to the identification de novo mutations in parent-offspring trios and to the genotyping of HLA loci. High-throughput DNA sequencing technology has transformed genetic research and is starting to make an impact on clinical practice. However, analyzing high-throughput sequencing data remains challenging, particularly in clinical settings where accuracy and turnaround times are critical. We present a new approach to this problem, implemented in a software package called Platypus. Platypus achieves high sensitivity and specificity for SNPs, indels and complex polymorphisms by using local de novo assembly to generate candidate variants, followed by local realignment and probabilistic haplotype estimation. It is an order of magnitude faster than existing tools and generates calls from raw aligned read data without preprocessing. We demonstrate the performance of Platypus in clinically relevant experimental designs by comparing with SAMtools and GATK on whole-genome and exome-capture data, by identifying de novo variation in 15 parent-offspring trios with high sensitivity and specificity, and by estimating human leukocyte antigen genotypes directly from variant calls.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng.3036</identifier><identifier>PMID: 25017105</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>45 ; 631/114/2785 ; 631/208/514/1948 ; 692/308/2056 ; 692/700/228/2050/1512 ; Agriculture ; Algorithms ; Animal Genetics and Genomics ; Aquatic mammals ; Biomedical research ; Biomedicine ; Cancer Research ; Candidates ; Chromosome Mapping - methods ; DNA sequencing ; Exome ; Gene Function ; Genetic aspects ; Genome, Human ; Genomes ; Genomic Structural Variation ; Genotype ; Genotypes ; Haplotypes ; High-Throughput Nucleotide Sequencing - methods ; HLA Antigens - genetics ; Human Genetics ; Humans ; Medical research ; Methods ; Mutation ; Nucleotide sequencing ; Offspring ; Platypus ; Polymorphism, Single Nucleotide ; Sensitivity and Specificity ; Sequence Analysis, DNA - methods ; Single nucleotide polymorphisms ; Software ; technical-report</subject><ispartof>Nature genetics, 2014-08, Vol.46 (8), p.912-918</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c664t-ae1c447954f5175ccc3a1f0913290a7e1b9a4a47f6bae0616a9e09ee90f9ce23</citedby><cites>FETCH-LOGICAL-c664t-ae1c447954f5175ccc3a1f0913290a7e1b9a4a47f6bae0616a9e09ee90f9ce23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng.3036$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng.3036$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25017105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rimmer, Andy</creatorcontrib><creatorcontrib>Phan, Hang</creatorcontrib><creatorcontrib>Mathieson, Iain</creatorcontrib><creatorcontrib>Iqbal, Zamin</creatorcontrib><creatorcontrib>Twigg, Stephen R F</creatorcontrib><creatorcontrib>Wilkie, Andrew O M</creatorcontrib><creatorcontrib>McVean, Gil</creatorcontrib><creatorcontrib>Lunter, Gerton</creatorcontrib><creatorcontrib>WGS500 Consortium</creatorcontrib><title>Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Gerton Lunter and colleagues report Platypus software, which combines a haplotype-based multi-sample variant caller with local sequence assembly in a Bayesian statistical framework. They demonstrate applications to exome and whole-genome data sets, to the identification de novo mutations in parent-offspring trios and to the genotyping of HLA loci. High-throughput DNA sequencing technology has transformed genetic research and is starting to make an impact on clinical practice. However, analyzing high-throughput sequencing data remains challenging, particularly in clinical settings where accuracy and turnaround times are critical. We present a new approach to this problem, implemented in a software package called Platypus. Platypus achieves high sensitivity and specificity for SNPs, indels and complex polymorphisms by using local de novo assembly to generate candidate variants, followed by local realignment and probabilistic haplotype estimation. It is an order of magnitude faster than existing tools and generates calls from raw aligned read data without preprocessing. We demonstrate the performance of Platypus in clinically relevant experimental designs by comparing with SAMtools and GATK on whole-genome and exome-capture data, by identifying de novo variation in 15 parent-offspring trios with high sensitivity and specificity, and by estimating human leukocyte antigen genotypes directly from variant calls.</description><subject>45</subject><subject>631/114/2785</subject><subject>631/208/514/1948</subject><subject>692/308/2056</subject><subject>692/700/228/2050/1512</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Animal Genetics and Genomics</subject><subject>Aquatic mammals</subject><subject>Biomedical research</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Candidates</subject><subject>Chromosome Mapping - methods</subject><subject>DNA sequencing</subject><subject>Exome</subject><subject>Gene Function</subject><subject>Genetic aspects</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Genomic Structural Variation</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Haplotypes</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>HLA Antigens - genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Medical research</subject><subject>Methods</subject><subject>Mutation</subject><subject>Nucleotide sequencing</subject><subject>Offspring</subject><subject>Platypus</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Sensitivity and Specificity</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Single nucleotide polymorphisms</subject><subject>Software</subject><subject>technical-report</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkt9rFDEQxxdRbK3ifyALPqjQPZNL9kdehFLUHhQKWnwNc7nZvZRssia71fvvnaW17RUfJA8TZj7zHebLZNlrzhacieaj7xaCiepJdshLWRW85s1T-rOKF5LyB9mLlK4Y41Ky5nl2sCwZIaw8zH6t_IhdhNH6Lu9hGCgWxzmkhP3a7Yoc_CbfwuDCuBuwWEPCTU5YDGC2mPI2xNyAc3P7NUQLfky59bmhjKVCnvDnhN7MdWpzlBtt8Oll9qwFl_DVbTzKLr98vjw9K84vvq5OT84LU1VyLAC5kbJWpWxLXpfGGAG8ZYqLpWJQI18rkCDrtloD0rYVKGQKUbFWGVyKo-zTjewwrXvcGPRjBKeHaHuIOx3A6v2Kt1vdhWst61JUtSKB97cCMdAiadS9TQadA49hSprsVpUQoplnvX2EXoUpetqOqJKrRnKu7qkOHGrr20BzzSyqT0TDalk3oiJq8Q-K3gZ7a4LH1lJ-r-HDXgMxI_4eO5hS0qvv3_6fvfixz767YU0MKUVs77zjTM-np32n59Mj8s1Dq--4v7d2b2Wiku8wPvDnkdYfB5DgjQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Rimmer, Andy</creator><creator>Phan, Hang</creator><creator>Mathieson, Iain</creator><creator>Iqbal, Zamin</creator><creator>Twigg, Stephen R F</creator><creator>Wilkie, Andrew O M</creator><creator>McVean, Gil</creator><creator>Lunter, Gerton</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140801</creationdate><title>Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications</title><author>Rimmer, Andy ; Phan, Hang ; Mathieson, Iain ; Iqbal, Zamin ; Twigg, Stephen R F ; Wilkie, Andrew O M ; McVean, Gil ; Lunter, Gerton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c664t-ae1c447954f5175ccc3a1f0913290a7e1b9a4a47f6bae0616a9e09ee90f9ce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>45</topic><topic>631/114/2785</topic><topic>631/208/514/1948</topic><topic>692/308/2056</topic><topic>692/700/228/2050/1512</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Animal Genetics and Genomics</topic><topic>Aquatic mammals</topic><topic>Biomedical research</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Candidates</topic><topic>Chromosome Mapping - methods</topic><topic>DNA sequencing</topic><topic>Exome</topic><topic>Gene Function</topic><topic>Genetic aspects</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Genomic Structural Variation</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Haplotypes</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>HLA Antigens - genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Medical research</topic><topic>Methods</topic><topic>Mutation</topic><topic>Nucleotide sequencing</topic><topic>Offspring</topic><topic>Platypus</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Sensitivity and Specificity</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Single nucleotide polymorphisms</topic><topic>Software</topic><topic>technical-report</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rimmer, Andy</creatorcontrib><creatorcontrib>Phan, Hang</creatorcontrib><creatorcontrib>Mathieson, Iain</creatorcontrib><creatorcontrib>Iqbal, Zamin</creatorcontrib><creatorcontrib>Twigg, Stephen R F</creatorcontrib><creatorcontrib>Wilkie, Andrew O M</creatorcontrib><creatorcontrib>McVean, Gil</creatorcontrib><creatorcontrib>Lunter, Gerton</creatorcontrib><creatorcontrib>WGS500 Consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rimmer, Andy</au><au>Phan, Hang</au><au>Mathieson, Iain</au><au>Iqbal, Zamin</au><au>Twigg, Stephen R F</au><au>Wilkie, Andrew O M</au><au>McVean, Gil</au><au>Lunter, Gerton</au><aucorp>WGS500 Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>46</volume><issue>8</issue><spage>912</spage><epage>918</epage><pages>912-918</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Gerton Lunter and colleagues report Platypus software, which combines a haplotype-based multi-sample variant caller with local sequence assembly in a Bayesian statistical framework. They demonstrate applications to exome and whole-genome data sets, to the identification de novo mutations in parent-offspring trios and to the genotyping of HLA loci. High-throughput DNA sequencing technology has transformed genetic research and is starting to make an impact on clinical practice. However, analyzing high-throughput sequencing data remains challenging, particularly in clinical settings where accuracy and turnaround times are critical. We present a new approach to this problem, implemented in a software package called Platypus. Platypus achieves high sensitivity and specificity for SNPs, indels and complex polymorphisms by using local de novo assembly to generate candidate variants, followed by local realignment and probabilistic haplotype estimation. It is an order of magnitude faster than existing tools and generates calls from raw aligned read data without preprocessing. We demonstrate the performance of Platypus in clinically relevant experimental designs by comparing with SAMtools and GATK on whole-genome and exome-capture data, by identifying de novo variation in 15 parent-offspring trios with high sensitivity and specificity, and by estimating human leukocyte antigen genotypes directly from variant calls.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25017105</pmid><doi>10.1038/ng.3036</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2014-08, Vol.46 (8), p.912-918
issn 1061-4036
1546-1718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4753679
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 45
631/114/2785
631/208/514/1948
692/308/2056
692/700/228/2050/1512
Agriculture
Algorithms
Animal Genetics and Genomics
Aquatic mammals
Biomedical research
Biomedicine
Cancer Research
Candidates
Chromosome Mapping - methods
DNA sequencing
Exome
Gene Function
Genetic aspects
Genome, Human
Genomes
Genomic Structural Variation
Genotype
Genotypes
Haplotypes
High-Throughput Nucleotide Sequencing - methods
HLA Antigens - genetics
Human Genetics
Humans
Medical research
Methods
Mutation
Nucleotide sequencing
Offspring
Platypus
Polymorphism, Single Nucleotide
Sensitivity and Specificity
Sequence Analysis, DNA - methods
Single nucleotide polymorphisms
Software
technical-report
title Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20mapping-,%20assembly-%20and%20haplotype-based%20approaches%20for%20calling%20variants%20in%20clinical%20sequencing%20applications&rft.jtitle=Nature%20genetics&rft.au=Rimmer,%20Andy&rft.aucorp=WGS500%20Consortium&rft.date=2014-08-01&rft.volume=46&rft.issue=8&rft.spage=912&rft.epage=918&rft.pages=912-918&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/ng.3036&rft_dat=%3Cgale_pubme%3EA380747836%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551984119&rft_id=info:pmid/25017105&rft_galeid=A380747836&rfr_iscdi=true