Observation of the Kibble–Zurek Mechanism in Microscopic Acoustic Crackling Noises
Characterizing the fast evolution of microstructural defects is key to understanding “crackling” phenomena during the deformation of solid materials. For example, it has been proposed using atomistic simulations of crack propagation in elastic materials that the formation of a nonlinear hyperelastic...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-02, Vol.6 (1), p.21210-21210, Article 21210 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21210 |
---|---|
container_issue | 1 |
container_start_page | 21210 |
container_title | Scientific reports |
container_volume | 6 |
creator | Ghaffari, H. O. Griffth, W. A. Benson, P.M. Xia, K. Young, R. P. |
description | Characterizing the fast evolution of microstructural defects is key to understanding “crackling” phenomena during the deformation of solid materials. For example, it has been proposed using atomistic simulations of crack propagation in elastic materials that the formation of a nonlinear hyperelastic or plastic zone around moving crack tips controls crack velocity. To date, progress in understanding the physics of this critical zone has been limited due to the lack of data describing the complex physical processes that operate near microscopic crack tips. We show, by analyzing many acoustic emission events during rock deformation experiments, that the signature of this nonlinear zone maps directly to crackling noises. In particular, we characterize a weakening zone that forms near the moving crack tips using functional networks and we determine the scaling law between the formation of damages (defects) and the traversal rate across the critical point of transition. Moreover, we show that the correlation length near the transition remains effectively frozen. This is the main underlying hypothesis behind the Kibble-Zurek mechanism (KZM) and the obtained power-law scaling verifies the main prediction of KZM. |
doi_str_mv | 10.1038/srep21210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4753415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1765921706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-28ddb209408ce33ebf4b1f3e424e21084965feb54d4540203183a7638fafe0083</originalsourceid><addsrcrecordid>eNplkctKAzEUhoMoKurCF5ABNypUc53JbIRSvOFtoxs3IZOeaaPTpCYzgjvfwTf0SYxUS9WzyYHz8Z_z50dom-BDgpk8igGmlFCCl9A6xVz0KKN0eaFfQ1sxPuJUgpaclKtojeayyInI19HdbRUhvOjWepf5OmvHkF3aqmrg4-39oQvwlF2DGWtn4ySzLru2Jvho_NSarG98F9vUDII2T411o-zG2whxE63Uuomw9f1uoPvTk7vBee_q9uxi0L_qGc5k26NyOKwoLjmWBhiDquYVqRlwyiH5kbzMRQ2V4EMuOKaYEcl0kTNZ6xowlmwDHc90p101gaEB1wbdqGmwEx1elddW_Z44O1Yj_6J4IRgnIgnsfQsE_9xBbNXERgNNox0kb4oUuSgpKXCe0N0_6KPvgkv2FJFliUkpMUnU_oz6-qWUTD0_hmD1FZeax5XYncXr5-RPOAk4mAExjdwIwsLKf2qfrhGfNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899019801</pqid></control><display><type>article</type><title>Observation of the Kibble–Zurek Mechanism in Microscopic Acoustic Crackling Noises</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ghaffari, H. O. ; Griffth, W. A. ; Benson, P.M. ; Xia, K. ; Young, R. P.</creator><creatorcontrib>Ghaffari, H. O. ; Griffth, W. A. ; Benson, P.M. ; Xia, K. ; Young, R. P.</creatorcontrib><description>Characterizing the fast evolution of microstructural defects is key to understanding “crackling” phenomena during the deformation of solid materials. For example, it has been proposed using atomistic simulations of crack propagation in elastic materials that the formation of a nonlinear hyperelastic or plastic zone around moving crack tips controls crack velocity. To date, progress in understanding the physics of this critical zone has been limited due to the lack of data describing the complex physical processes that operate near microscopic crack tips. We show, by analyzing many acoustic emission events during rock deformation experiments, that the signature of this nonlinear zone maps directly to crackling noises. In particular, we characterize a weakening zone that forms near the moving crack tips using functional networks and we determine the scaling law between the formation of damages (defects) and the traversal rate across the critical point of transition. Moreover, we show that the correlation length near the transition remains effectively frozen. This is the main underlying hypothesis behind the Kibble-Zurek mechanism (KZM) and the obtained power-law scaling verifies the main prediction of KZM.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep21210</identifier><identifier>PMID: 26876156</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 639/301/930/12 ; 639/766/119/2795 ; 704/2151/2809 ; Acoustic emission ; Crack propagation ; Humanities and Social Sciences ; multidisciplinary ; Plastics ; Scaling ; Science ; Velocity</subject><ispartof>Scientific reports, 2016-02, Vol.6 (1), p.21210-21210, Article 21210</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-28ddb209408ce33ebf4b1f3e424e21084965feb54d4540203183a7638fafe0083</citedby><cites>FETCH-LOGICAL-c438t-28ddb209408ce33ebf4b1f3e424e21084965feb54d4540203183a7638fafe0083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753415/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753415/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27911,27912,41107,42176,51563,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26876156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghaffari, H. O.</creatorcontrib><creatorcontrib>Griffth, W. A.</creatorcontrib><creatorcontrib>Benson, P.M.</creatorcontrib><creatorcontrib>Xia, K.</creatorcontrib><creatorcontrib>Young, R. P.</creatorcontrib><title>Observation of the Kibble–Zurek Mechanism in Microscopic Acoustic Crackling Noises</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Characterizing the fast evolution of microstructural defects is key to understanding “crackling” phenomena during the deformation of solid materials. For example, it has been proposed using atomistic simulations of crack propagation in elastic materials that the formation of a nonlinear hyperelastic or plastic zone around moving crack tips controls crack velocity. To date, progress in understanding the physics of this critical zone has been limited due to the lack of data describing the complex physical processes that operate near microscopic crack tips. We show, by analyzing many acoustic emission events during rock deformation experiments, that the signature of this nonlinear zone maps directly to crackling noises. In particular, we characterize a weakening zone that forms near the moving crack tips using functional networks and we determine the scaling law between the formation of damages (defects) and the traversal rate across the critical point of transition. Moreover, we show that the correlation length near the transition remains effectively frozen. This is the main underlying hypothesis behind the Kibble-Zurek mechanism (KZM) and the obtained power-law scaling verifies the main prediction of KZM.</description><subject>639/166</subject><subject>639/301/930/12</subject><subject>639/766/119/2795</subject><subject>704/2151/2809</subject><subject>Acoustic emission</subject><subject>Crack propagation</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Plastics</subject><subject>Scaling</subject><subject>Science</subject><subject>Velocity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkctKAzEUhoMoKurCF5ABNypUc53JbIRSvOFtoxs3IZOeaaPTpCYzgjvfwTf0SYxUS9WzyYHz8Z_z50dom-BDgpk8igGmlFCCl9A6xVz0KKN0eaFfQ1sxPuJUgpaclKtojeayyInI19HdbRUhvOjWepf5OmvHkF3aqmrg4-39oQvwlF2DGWtn4ySzLru2Jvho_NSarG98F9vUDII2T411o-zG2whxE63Uuomw9f1uoPvTk7vBee_q9uxi0L_qGc5k26NyOKwoLjmWBhiDquYVqRlwyiH5kbzMRQ2V4EMuOKaYEcl0kTNZ6xowlmwDHc90p101gaEB1wbdqGmwEx1elddW_Z44O1Yj_6J4IRgnIgnsfQsE_9xBbNXERgNNox0kb4oUuSgpKXCe0N0_6KPvgkv2FJFliUkpMUnU_oz6-qWUTD0_hmD1FZeax5XYncXr5-RPOAk4mAExjdwIwsLKf2qfrhGfNA</recordid><startdate>20160215</startdate><enddate>20160215</enddate><creator>Ghaffari, H. O.</creator><creator>Griffth, W. A.</creator><creator>Benson, P.M.</creator><creator>Xia, K.</creator><creator>Young, R. P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160215</creationdate><title>Observation of the Kibble–Zurek Mechanism in Microscopic Acoustic Crackling Noises</title><author>Ghaffari, H. O. ; Griffth, W. A. ; Benson, P.M. ; Xia, K. ; Young, R. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-28ddb209408ce33ebf4b1f3e424e21084965feb54d4540203183a7638fafe0083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/166</topic><topic>639/301/930/12</topic><topic>639/766/119/2795</topic><topic>704/2151/2809</topic><topic>Acoustic emission</topic><topic>Crack propagation</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Plastics</topic><topic>Scaling</topic><topic>Science</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaffari, H. O.</creatorcontrib><creatorcontrib>Griffth, W. A.</creatorcontrib><creatorcontrib>Benson, P.M.</creatorcontrib><creatorcontrib>Xia, K.</creatorcontrib><creatorcontrib>Young, R. P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaffari, H. O.</au><au>Griffth, W. A.</au><au>Benson, P.M.</au><au>Xia, K.</au><au>Young, R. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of the Kibble–Zurek Mechanism in Microscopic Acoustic Crackling Noises</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-02-15</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>21210</spage><epage>21210</epage><pages>21210-21210</pages><artnum>21210</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Characterizing the fast evolution of microstructural defects is key to understanding “crackling” phenomena during the deformation of solid materials. For example, it has been proposed using atomistic simulations of crack propagation in elastic materials that the formation of a nonlinear hyperelastic or plastic zone around moving crack tips controls crack velocity. To date, progress in understanding the physics of this critical zone has been limited due to the lack of data describing the complex physical processes that operate near microscopic crack tips. We show, by analyzing many acoustic emission events during rock deformation experiments, that the signature of this nonlinear zone maps directly to crackling noises. In particular, we characterize a weakening zone that forms near the moving crack tips using functional networks and we determine the scaling law between the formation of damages (defects) and the traversal rate across the critical point of transition. Moreover, we show that the correlation length near the transition remains effectively frozen. This is the main underlying hypothesis behind the Kibble-Zurek mechanism (KZM) and the obtained power-law scaling verifies the main prediction of KZM.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26876156</pmid><doi>10.1038/srep21210</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-02, Vol.6 (1), p.21210-21210, Article 21210 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4753415 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 639/166 639/301/930/12 639/766/119/2795 704/2151/2809 Acoustic emission Crack propagation Humanities and Social Sciences multidisciplinary Plastics Scaling Science Velocity |
title | Observation of the Kibble–Zurek Mechanism in Microscopic Acoustic Crackling Noises |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20the%20Kibble%E2%80%93Zurek%20Mechanism%20in%20Microscopic%20Acoustic%20Crackling%20Noises&rft.jtitle=Scientific%20reports&rft.au=Ghaffari,%20H.%20O.&rft.date=2016-02-15&rft.volume=6&rft.issue=1&rft.spage=21210&rft.epage=21210&rft.pages=21210-21210&rft.artnum=21210&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep21210&rft_dat=%3Cproquest_pubme%3E1765921706%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899019801&rft_id=info:pmid/26876156&rfr_iscdi=true |