Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress

Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery diseas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants & redox signaling 2015-10, Vol.23 (11), p.899-942
Hauptverfasser: Daiber, Andreas, Münzel, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 942
container_issue 11
container_start_page 899
container_title Antioxidants & redox signaling
container_volume 23
creator Daiber, Andreas
Münzel, Thomas
description Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.
doi_str_mv 10.1089/ars.2015.6376
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4752190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1722928129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-1d6d0f9e8c5d2d138b15d944daa82a12d3d03e72feda751b4776434e792cbad3</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhi0EoqVw5Ip85NAs_kjihAMStAtUqlip3bs165nsGmXtxU6q7i_o3yZLP4DTjF6_emc8D2NvpZhJ0bQfIOWZErKa1drUz9ixrCpTGCPr54de6UI0dXnEXuX8UwihpBQv2ZGqVS1bIY_Z3SKtIXjHf_ghwUB8uaEEu_3pXyH2kxIcnXII-CgXFwFHR8jnAeOwod5Dz8_3uRuDG3wMH_l8u9tA9pnHwK8I4y3_4mMf1_s_MYtbjzD4G-LXQ6KcX7MXHfSZ3jzUE7b8Ol-efS8uF98uzj5fFq6s9FBIrFF0LTWuQoVSNytZYVuWCNAokAo1Ck1GdYRgKrkqjalLXZJplVsB6hP26T52N662hI7C9Jve7pLfQtrbCN7-_xL8xq7jjS1NpaaLTQHvHwJS_DVSHuzWZ0d9D4HimK00SrWqkaqdrMW91aWYc6LuaYwU9sDOTuzsgZ09sJv87_7d7cn9CEv_BjhFmJU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722928129</pqid></control><display><type>article</type><title>Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Daiber, Andreas ; Münzel, Thomas</creator><creatorcontrib>Daiber, Andreas ; Münzel, Thomas</creatorcontrib><description>Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.</description><identifier>ISSN: 1523-0864</identifier><identifier>EISSN: 1557-7716</identifier><identifier>DOI: 10.1089/ars.2015.6376</identifier><identifier>PMID: 26261901</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Cardiovascular Diseases - drug therapy ; Cardiovascular Diseases - metabolism ; Comprehensive Invited Review ; Endothelium, Vascular - drug effects ; Endothelium, Vascular - physiopathology ; Humans ; Nitrates - pharmacology ; Nitrates - therapeutic use ; Oxidation-Reduction ; Oxidative Stress ; Reactive Oxygen Species - metabolism ; Vasodilator Agents - pharmacology ; Vasodilator Agents - therapeutic use</subject><ispartof>Antioxidants &amp; redox signaling, 2015-10, Vol.23 (11), p.899-942</ispartof><rights>Andreas Daiber and Thomas Münzel 2015; Published by Mary Ann Liebert, Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-1d6d0f9e8c5d2d138b15d944daa82a12d3d03e72feda751b4776434e792cbad3</citedby><cites>FETCH-LOGICAL-c453t-1d6d0f9e8c5d2d138b15d944daa82a12d3d03e72feda751b4776434e792cbad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26261901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daiber, Andreas</creatorcontrib><creatorcontrib>Münzel, Thomas</creatorcontrib><title>Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress</title><title>Antioxidants &amp; redox signaling</title><addtitle>Antioxid Redox Signal</addtitle><description>Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.</description><subject>Animals</subject><subject>Cardiovascular Diseases - drug therapy</subject><subject>Cardiovascular Diseases - metabolism</subject><subject>Comprehensive Invited Review</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Endothelium, Vascular - physiopathology</subject><subject>Humans</subject><subject>Nitrates - pharmacology</subject><subject>Nitrates - therapeutic use</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Vasodilator Agents - pharmacology</subject><subject>Vasodilator Agents - therapeutic use</subject><issn>1523-0864</issn><issn>1557-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1v1DAQhi0EoqVw5Ip85NAs_kjihAMStAtUqlip3bs165nsGmXtxU6q7i_o3yZLP4DTjF6_emc8D2NvpZhJ0bQfIOWZErKa1drUz9ixrCpTGCPr54de6UI0dXnEXuX8UwihpBQv2ZGqVS1bIY_Z3SKtIXjHf_ghwUB8uaEEu_3pXyH2kxIcnXII-CgXFwFHR8jnAeOwod5Dz8_3uRuDG3wMH_l8u9tA9pnHwK8I4y3_4mMf1_s_MYtbjzD4G-LXQ6KcX7MXHfSZ3jzUE7b8Ol-efS8uF98uzj5fFq6s9FBIrFF0LTWuQoVSNytZYVuWCNAokAo1Ck1GdYRgKrkqjalLXZJplVsB6hP26T52N662hI7C9Jve7pLfQtrbCN7-_xL8xq7jjS1NpaaLTQHvHwJS_DVSHuzWZ0d9D4HimK00SrWqkaqdrMW91aWYc6LuaYwU9sDOTuzsgZ09sJv87_7d7cn9CEv_BjhFmJU</recordid><startdate>20151010</startdate><enddate>20151010</enddate><creator>Daiber, Andreas</creator><creator>Münzel, Thomas</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151010</creationdate><title>Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress</title><author>Daiber, Andreas ; Münzel, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-1d6d0f9e8c5d2d138b15d944daa82a12d3d03e72feda751b4776434e792cbad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cardiovascular Diseases - drug therapy</topic><topic>Cardiovascular Diseases - metabolism</topic><topic>Comprehensive Invited Review</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Endothelium, Vascular - physiopathology</topic><topic>Humans</topic><topic>Nitrates - pharmacology</topic><topic>Nitrates - therapeutic use</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Vasodilator Agents - pharmacology</topic><topic>Vasodilator Agents - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daiber, Andreas</creatorcontrib><creatorcontrib>Münzel, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Antioxidants &amp; redox signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daiber, Andreas</au><au>Münzel, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress</atitle><jtitle>Antioxidants &amp; redox signaling</jtitle><addtitle>Antioxid Redox Signal</addtitle><date>2015-10-10</date><risdate>2015</risdate><volume>23</volume><issue>11</issue><spage>899</spage><epage>942</epage><pages>899-942</pages><issn>1523-0864</issn><eissn>1557-7716</eissn><abstract>Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>26261901</pmid><doi>10.1089/ars.2015.6376</doi><tpages>44</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1523-0864
ispartof Antioxidants & redox signaling, 2015-10, Vol.23 (11), p.899-942
issn 1523-0864
1557-7716
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4752190
source MEDLINE; Alma/SFX Local Collection
subjects Animals
Cardiovascular Diseases - drug therapy
Cardiovascular Diseases - metabolism
Comprehensive Invited Review
Endothelium, Vascular - drug effects
Endothelium, Vascular - physiopathology
Humans
Nitrates - pharmacology
Nitrates - therapeutic use
Oxidation-Reduction
Oxidative Stress
Reactive Oxygen Species - metabolism
Vasodilator Agents - pharmacology
Vasodilator Agents - therapeutic use
title Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Nitrate%20Therapy,%20Nitrate%20Tolerance,%20and%20Nitrate-Induced%20Endothelial%20Dysfunction:%20Emphasis%20on%20Redox%20Biology%20and%20Oxidative%20Stress&rft.jtitle=Antioxidants%20&%20redox%20signaling&rft.au=Daiber,%20Andreas&rft.date=2015-10-10&rft.volume=23&rft.issue=11&rft.spage=899&rft.epage=942&rft.pages=899-942&rft.issn=1523-0864&rft.eissn=1557-7716&rft_id=info:doi/10.1089/ars.2015.6376&rft_dat=%3Cproquest_pubme%3E1722928129%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722928129&rft_id=info:pmid/26261901&rfr_iscdi=true