Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress
Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery diseas...
Gespeichert in:
Veröffentlicht in: | Antioxidants & redox signaling 2015-10, Vol.23 (11), p.899-942 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 942 |
---|---|
container_issue | 11 |
container_start_page | 899 |
container_title | Antioxidants & redox signaling |
container_volume | 23 |
creator | Daiber, Andreas Münzel, Thomas |
description | Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed. |
doi_str_mv | 10.1089/ars.2015.6376 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4752190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1722928129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-1d6d0f9e8c5d2d138b15d944daa82a12d3d03e72feda751b4776434e792cbad3</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhi0EoqVw5Ip85NAs_kjihAMStAtUqlip3bs165nsGmXtxU6q7i_o3yZLP4DTjF6_emc8D2NvpZhJ0bQfIOWZErKa1drUz9ixrCpTGCPr54de6UI0dXnEXuX8UwihpBQv2ZGqVS1bIY_Z3SKtIXjHf_ghwUB8uaEEu_3pXyH2kxIcnXII-CgXFwFHR8jnAeOwod5Dz8_3uRuDG3wMH_l8u9tA9pnHwK8I4y3_4mMf1_s_MYtbjzD4G-LXQ6KcX7MXHfSZ3jzUE7b8Ol-efS8uF98uzj5fFq6s9FBIrFF0LTWuQoVSNytZYVuWCNAokAo1Ck1GdYRgKrkqjalLXZJplVsB6hP26T52N662hI7C9Jve7pLfQtrbCN7-_xL8xq7jjS1NpaaLTQHvHwJS_DVSHuzWZ0d9D4HimK00SrWqkaqdrMW91aWYc6LuaYwU9sDOTuzsgZ09sJv87_7d7cn9CEv_BjhFmJU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722928129</pqid></control><display><type>article</type><title>Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Daiber, Andreas ; Münzel, Thomas</creator><creatorcontrib>Daiber, Andreas ; Münzel, Thomas</creatorcontrib><description>Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.</description><identifier>ISSN: 1523-0864</identifier><identifier>EISSN: 1557-7716</identifier><identifier>DOI: 10.1089/ars.2015.6376</identifier><identifier>PMID: 26261901</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Cardiovascular Diseases - drug therapy ; Cardiovascular Diseases - metabolism ; Comprehensive Invited Review ; Endothelium, Vascular - drug effects ; Endothelium, Vascular - physiopathology ; Humans ; Nitrates - pharmacology ; Nitrates - therapeutic use ; Oxidation-Reduction ; Oxidative Stress ; Reactive Oxygen Species - metabolism ; Vasodilator Agents - pharmacology ; Vasodilator Agents - therapeutic use</subject><ispartof>Antioxidants & redox signaling, 2015-10, Vol.23 (11), p.899-942</ispartof><rights>Andreas Daiber and Thomas Münzel 2015; Published by Mary Ann Liebert, Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-1d6d0f9e8c5d2d138b15d944daa82a12d3d03e72feda751b4776434e792cbad3</citedby><cites>FETCH-LOGICAL-c453t-1d6d0f9e8c5d2d138b15d944daa82a12d3d03e72feda751b4776434e792cbad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26261901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daiber, Andreas</creatorcontrib><creatorcontrib>Münzel, Thomas</creatorcontrib><title>Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress</title><title>Antioxidants & redox signaling</title><addtitle>Antioxid Redox Signal</addtitle><description>Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.</description><subject>Animals</subject><subject>Cardiovascular Diseases - drug therapy</subject><subject>Cardiovascular Diseases - metabolism</subject><subject>Comprehensive Invited Review</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Endothelium, Vascular - physiopathology</subject><subject>Humans</subject><subject>Nitrates - pharmacology</subject><subject>Nitrates - therapeutic use</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Vasodilator Agents - pharmacology</subject><subject>Vasodilator Agents - therapeutic use</subject><issn>1523-0864</issn><issn>1557-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1v1DAQhi0EoqVw5Ip85NAs_kjihAMStAtUqlip3bs165nsGmXtxU6q7i_o3yZLP4DTjF6_emc8D2NvpZhJ0bQfIOWZErKa1drUz9ixrCpTGCPr54de6UI0dXnEXuX8UwihpBQv2ZGqVS1bIY_Z3SKtIXjHf_ghwUB8uaEEu_3pXyH2kxIcnXII-CgXFwFHR8jnAeOwod5Dz8_3uRuDG3wMH_l8u9tA9pnHwK8I4y3_4mMf1_s_MYtbjzD4G-LXQ6KcX7MXHfSZ3jzUE7b8Ol-efS8uF98uzj5fFq6s9FBIrFF0LTWuQoVSNytZYVuWCNAokAo1Ck1GdYRgKrkqjalLXZJplVsB6hP26T52N662hI7C9Jve7pLfQtrbCN7-_xL8xq7jjS1NpaaLTQHvHwJS_DVSHuzWZ0d9D4HimK00SrWqkaqdrMW91aWYc6LuaYwU9sDOTuzsgZ09sJv87_7d7cn9CEv_BjhFmJU</recordid><startdate>20151010</startdate><enddate>20151010</enddate><creator>Daiber, Andreas</creator><creator>Münzel, Thomas</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151010</creationdate><title>Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress</title><author>Daiber, Andreas ; Münzel, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-1d6d0f9e8c5d2d138b15d944daa82a12d3d03e72feda751b4776434e792cbad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cardiovascular Diseases - drug therapy</topic><topic>Cardiovascular Diseases - metabolism</topic><topic>Comprehensive Invited Review</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Endothelium, Vascular - physiopathology</topic><topic>Humans</topic><topic>Nitrates - pharmacology</topic><topic>Nitrates - therapeutic use</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Vasodilator Agents - pharmacology</topic><topic>Vasodilator Agents - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daiber, Andreas</creatorcontrib><creatorcontrib>Münzel, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Antioxidants & redox signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daiber, Andreas</au><au>Münzel, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress</atitle><jtitle>Antioxidants & redox signaling</jtitle><addtitle>Antioxid Redox Signal</addtitle><date>2015-10-10</date><risdate>2015</risdate><volume>23</volume><issue>11</issue><spage>899</spage><epage>942</epage><pages>899-942</pages><issn>1523-0864</issn><eissn>1557-7716</eissn><abstract>Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>26261901</pmid><doi>10.1089/ars.2015.6376</doi><tpages>44</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1523-0864 |
ispartof | Antioxidants & redox signaling, 2015-10, Vol.23 (11), p.899-942 |
issn | 1523-0864 1557-7716 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4752190 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Animals Cardiovascular Diseases - drug therapy Cardiovascular Diseases - metabolism Comprehensive Invited Review Endothelium, Vascular - drug effects Endothelium, Vascular - physiopathology Humans Nitrates - pharmacology Nitrates - therapeutic use Oxidation-Reduction Oxidative Stress Reactive Oxygen Species - metabolism Vasodilator Agents - pharmacology Vasodilator Agents - therapeutic use |
title | Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Nitrate%20Therapy,%20Nitrate%20Tolerance,%20and%20Nitrate-Induced%20Endothelial%20Dysfunction:%20Emphasis%20on%20Redox%20Biology%20and%20Oxidative%20Stress&rft.jtitle=Antioxidants%20&%20redox%20signaling&rft.au=Daiber,%20Andreas&rft.date=2015-10-10&rft.volume=23&rft.issue=11&rft.spage=899&rft.epage=942&rft.pages=899-942&rft.issn=1523-0864&rft.eissn=1557-7716&rft_id=info:doi/10.1089/ars.2015.6376&rft_dat=%3Cproquest_pubme%3E1722928129%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722928129&rft_id=info:pmid/26261901&rfr_iscdi=true |