Grand and Semigrand Canonical Basin-Hopping

We introduce grand and semigrand canonical global optimization approaches using basin-hopping with an acceptance criterion based on the local contribution of each potential energy minimum to the (semi)­grand potential. The method is tested using local harmonic vibrational densities of states for ato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2016-02, Vol.12 (2), p.902-909
Hauptverfasser: Calvo, F, Schebarchov, D, Wales, D. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 909
container_issue 2
container_start_page 902
container_title Journal of chemical theory and computation
container_volume 12
creator Calvo, F
Schebarchov, D
Wales, D. J
description We introduce grand and semigrand canonical global optimization approaches using basin-hopping with an acceptance criterion based on the local contribution of each potential energy minimum to the (semi)­grand potential. The method is tested using local harmonic vibrational densities of states for atomic clusters as a function of temperature and chemical potential. The predicted global minima switch from dissociated states to clusters for larger values of the chemical potential and lower temperatures, in agreement with the predictions of a model fitted to heat capacity data for selected clusters. Semigrand canonical optimization allows us to identify particularly stable compositions in multicomponent nanoalloys as a function of increasing temperature, whereas the grand canonical potential can produce a useful survey of favorable structures as a byproduct of the global optimization search.
doi_str_mv 10.1021/acs.jctc.5b00962
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4750084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825526960</sourcerecordid><originalsourceid>FETCH-LOGICAL-a500t-5b2066c78cae6f61825016071870ae99f33274295b5d13485508a8852aa5a1653</originalsourceid><addsrcrecordid>eNqFkUFPAjEQhRujEUTvngxHjS5O2223ezFBomBC4kE9N0MpsGTp4nYh8d_bBSRqYjw0nbbfezPNI-ScQocCo7dofGduKtMRI4BUsgPSpCJOo1DKw31NVYOceD8H4Dxm_Jg0mJQyTThtkut-iW7crteLXWTTzamHrnCZwbx9jz5z0aBYLjM3PSVHE8y9PdvtLfL2-PDaG0TD5_5TrzuMUABUkRgxkNIkyqCVk9CdCaASEqoSQJumE85ZErNUjMSY8lgJAQqVEgxRIJWCt8jd1ne5Gi3s2FhXlZjrZZktsPzQBWb654vLZnparHWchAFUHAyutgazX7JBd6jrO2AQcwC6poG93DUri_eV9ZVeZN7YPEdni5XX9fiCyVTC_2giY86V4ElAYYuasvC-tJP9GBR0HZ0O0ek6Or2LLkguvv96L_jKKgA3W2AjLValCyH87fcJwcahbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764338537</pqid></control><display><type>article</type><title>Grand and Semigrand Canonical Basin-Hopping</title><source>MEDLINE</source><source>ACS Publications</source><creator>Calvo, F ; Schebarchov, D ; Wales, D. J</creator><creatorcontrib>Calvo, F ; Schebarchov, D ; Wales, D. J</creatorcontrib><description>We introduce grand and semigrand canonical global optimization approaches using basin-hopping with an acceptance criterion based on the local contribution of each potential energy minimum to the (semi)­grand potential. The method is tested using local harmonic vibrational densities of states for atomic clusters as a function of temperature and chemical potential. The predicted global minima switch from dissociated states to clusters for larger values of the chemical potential and lower temperatures, in agreement with the predictions of a model fitted to heat capacity data for selected clusters. Semigrand canonical optimization allows us to identify particularly stable compositions in multicomponent nanoalloys as a function of increasing temperature, whereas the grand canonical potential can produce a useful survey of favorable structures as a byproduct of the global optimization search.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.5b00962</identifier><identifier>PMID: 26669731</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Alloys - chemistry ; Chemical potential ; Chemical Sciences ; Clusters ; Harmonics ; Mathematical analysis ; Mathematical models ; Models, Molecular ; Nanostructure ; Nanostructures - chemistry ; Optimization ; or physical chemistry ; Searching ; Temperature ; Theoretical and ; Thermodynamics</subject><ispartof>Journal of chemical theory and computation, 2016-02, Vol.12 (2), p.902-909</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2015 American Chemical Society 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a500t-5b2066c78cae6f61825016071870ae99f33274295b5d13485508a8852aa5a1653</citedby><cites>FETCH-LOGICAL-a500t-5b2066c78cae6f61825016071870ae99f33274295b5d13485508a8852aa5a1653</cites><orcidid>0000-0002-3555-6645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.5b00962$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.5b00962$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26669731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02043001$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Calvo, F</creatorcontrib><creatorcontrib>Schebarchov, D</creatorcontrib><creatorcontrib>Wales, D. J</creatorcontrib><title>Grand and Semigrand Canonical Basin-Hopping</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We introduce grand and semigrand canonical global optimization approaches using basin-hopping with an acceptance criterion based on the local contribution of each potential energy minimum to the (semi)­grand potential. The method is tested using local harmonic vibrational densities of states for atomic clusters as a function of temperature and chemical potential. The predicted global minima switch from dissociated states to clusters for larger values of the chemical potential and lower temperatures, in agreement with the predictions of a model fitted to heat capacity data for selected clusters. Semigrand canonical optimization allows us to identify particularly stable compositions in multicomponent nanoalloys as a function of increasing temperature, whereas the grand canonical potential can produce a useful survey of favorable structures as a byproduct of the global optimization search.</description><subject>Algorithms</subject><subject>Alloys - chemistry</subject><subject>Chemical potential</subject><subject>Chemical Sciences</subject><subject>Clusters</subject><subject>Harmonics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Models, Molecular</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Optimization</subject><subject>or physical chemistry</subject><subject>Searching</subject><subject>Temperature</subject><subject>Theoretical and</subject><subject>Thermodynamics</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUFPAjEQhRujEUTvngxHjS5O2223ezFBomBC4kE9N0MpsGTp4nYh8d_bBSRqYjw0nbbfezPNI-ScQocCo7dofGduKtMRI4BUsgPSpCJOo1DKw31NVYOceD8H4Dxm_Jg0mJQyTThtkut-iW7crteLXWTTzamHrnCZwbx9jz5z0aBYLjM3PSVHE8y9PdvtLfL2-PDaG0TD5_5TrzuMUABUkRgxkNIkyqCVk9CdCaASEqoSQJumE85ZErNUjMSY8lgJAQqVEgxRIJWCt8jd1ne5Gi3s2FhXlZjrZZktsPzQBWb654vLZnparHWchAFUHAyutgazX7JBd6jrO2AQcwC6poG93DUri_eV9ZVeZN7YPEdni5XX9fiCyVTC_2giY86V4ElAYYuasvC-tJP9GBR0HZ0O0ek6Or2LLkguvv96L_jKKgA3W2AjLValCyH87fcJwcahbw</recordid><startdate>20160209</startdate><enddate>20160209</enddate><creator>Calvo, F</creator><creator>Schebarchov, D</creator><creator>Wales, D. J</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3555-6645</orcidid></search><sort><creationdate>20160209</creationdate><title>Grand and Semigrand Canonical Basin-Hopping</title><author>Calvo, F ; Schebarchov, D ; Wales, D. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a500t-5b2066c78cae6f61825016071870ae99f33274295b5d13485508a8852aa5a1653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Alloys - chemistry</topic><topic>Chemical potential</topic><topic>Chemical Sciences</topic><topic>Clusters</topic><topic>Harmonics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Models, Molecular</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Optimization</topic><topic>or physical chemistry</topic><topic>Searching</topic><topic>Temperature</topic><topic>Theoretical and</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvo, F</creatorcontrib><creatorcontrib>Schebarchov, D</creatorcontrib><creatorcontrib>Wales, D. J</creatorcontrib><collection>Access via American Chemical Society (ACS)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvo, F</au><au>Schebarchov, D</au><au>Wales, D. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grand and Semigrand Canonical Basin-Hopping</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-02-09</date><risdate>2016</risdate><volume>12</volume><issue>2</issue><spage>902</spage><epage>909</epage><pages>902-909</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We introduce grand and semigrand canonical global optimization approaches using basin-hopping with an acceptance criterion based on the local contribution of each potential energy minimum to the (semi)­grand potential. The method is tested using local harmonic vibrational densities of states for atomic clusters as a function of temperature and chemical potential. The predicted global minima switch from dissociated states to clusters for larger values of the chemical potential and lower temperatures, in agreement with the predictions of a model fitted to heat capacity data for selected clusters. Semigrand canonical optimization allows us to identify particularly stable compositions in multicomponent nanoalloys as a function of increasing temperature, whereas the grand canonical potential can produce a useful survey of favorable structures as a byproduct of the global optimization search.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26669731</pmid><doi>10.1021/acs.jctc.5b00962</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3555-6645</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2016-02, Vol.12 (2), p.902-909
issn 1549-9618
1549-9626
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4750084
source MEDLINE; ACS Publications
subjects Algorithms
Alloys - chemistry
Chemical potential
Chemical Sciences
Clusters
Harmonics
Mathematical analysis
Mathematical models
Models, Molecular
Nanostructure
Nanostructures - chemistry
Optimization
or physical chemistry
Searching
Temperature
Theoretical and
Thermodynamics
title Grand and Semigrand Canonical Basin-Hopping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grand%20and%20Semigrand%20Canonical%20Basin-Hopping&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Calvo,%20F&rft.date=2016-02-09&rft.volume=12&rft.issue=2&rft.spage=902&rft.epage=909&rft.pages=902-909&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.5b00962&rft_dat=%3Cproquest_pubme%3E1825526960%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764338537&rft_id=info:pmid/26669731&rfr_iscdi=true