Grand and Semigrand Canonical Basin-Hopping
We introduce grand and semigrand canonical global optimization approaches using basin-hopping with an acceptance criterion based on the local contribution of each potential energy minimum to the (semi)grand potential. The method is tested using local harmonic vibrational densities of states for ato...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2016-02, Vol.12 (2), p.902-909 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 909 |
---|---|
container_issue | 2 |
container_start_page | 902 |
container_title | Journal of chemical theory and computation |
container_volume | 12 |
creator | Calvo, F Schebarchov, D Wales, D. J |
description | We introduce grand and semigrand canonical global optimization approaches using basin-hopping with an acceptance criterion based on the local contribution of each potential energy minimum to the (semi)grand potential. The method is tested using local harmonic vibrational densities of states for atomic clusters as a function of temperature and chemical potential. The predicted global minima switch from dissociated states to clusters for larger values of the chemical potential and lower temperatures, in agreement with the predictions of a model fitted to heat capacity data for selected clusters. Semigrand canonical optimization allows us to identify particularly stable compositions in multicomponent nanoalloys as a function of increasing temperature, whereas the grand canonical potential can produce a useful survey of favorable structures as a byproduct of the global optimization search. |
doi_str_mv | 10.1021/acs.jctc.5b00962 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4750084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825526960</sourcerecordid><originalsourceid>FETCH-LOGICAL-a500t-5b2066c78cae6f61825016071870ae99f33274295b5d13485508a8852aa5a1653</originalsourceid><addsrcrecordid>eNqFkUFPAjEQhRujEUTvngxHjS5O2223ezFBomBC4kE9N0MpsGTp4nYh8d_bBSRqYjw0nbbfezPNI-ScQocCo7dofGduKtMRI4BUsgPSpCJOo1DKw31NVYOceD8H4Dxm_Jg0mJQyTThtkut-iW7crteLXWTTzamHrnCZwbx9jz5z0aBYLjM3PSVHE8y9PdvtLfL2-PDaG0TD5_5TrzuMUABUkRgxkNIkyqCVk9CdCaASEqoSQJumE85ZErNUjMSY8lgJAQqVEgxRIJWCt8jd1ne5Gi3s2FhXlZjrZZktsPzQBWb654vLZnparHWchAFUHAyutgazX7JBd6jrO2AQcwC6poG93DUri_eV9ZVeZN7YPEdni5XX9fiCyVTC_2giY86V4ElAYYuasvC-tJP9GBR0HZ0O0ek6Or2LLkguvv96L_jKKgA3W2AjLValCyH87fcJwcahbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764338537</pqid></control><display><type>article</type><title>Grand and Semigrand Canonical Basin-Hopping</title><source>MEDLINE</source><source>ACS Publications</source><creator>Calvo, F ; Schebarchov, D ; Wales, D. J</creator><creatorcontrib>Calvo, F ; Schebarchov, D ; Wales, D. J</creatorcontrib><description>We introduce grand and semigrand canonical global optimization approaches using basin-hopping with an acceptance criterion based on the local contribution of each potential energy minimum to the (semi)grand potential. The method is tested using local harmonic vibrational densities of states for atomic clusters as a function of temperature and chemical potential. The predicted global minima switch from dissociated states to clusters for larger values of the chemical potential and lower temperatures, in agreement with the predictions of a model fitted to heat capacity data for selected clusters. Semigrand canonical optimization allows us to identify particularly stable compositions in multicomponent nanoalloys as a function of increasing temperature, whereas the grand canonical potential can produce a useful survey of favorable structures as a byproduct of the global optimization search.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.5b00962</identifier><identifier>PMID: 26669731</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Alloys - chemistry ; Chemical potential ; Chemical Sciences ; Clusters ; Harmonics ; Mathematical analysis ; Mathematical models ; Models, Molecular ; Nanostructure ; Nanostructures - chemistry ; Optimization ; or physical chemistry ; Searching ; Temperature ; Theoretical and ; Thermodynamics</subject><ispartof>Journal of chemical theory and computation, 2016-02, Vol.12 (2), p.902-909</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2015 American Chemical Society 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a500t-5b2066c78cae6f61825016071870ae99f33274295b5d13485508a8852aa5a1653</citedby><cites>FETCH-LOGICAL-a500t-5b2066c78cae6f61825016071870ae99f33274295b5d13485508a8852aa5a1653</cites><orcidid>0000-0002-3555-6645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.5b00962$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.5b00962$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26669731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02043001$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Calvo, F</creatorcontrib><creatorcontrib>Schebarchov, D</creatorcontrib><creatorcontrib>Wales, D. J</creatorcontrib><title>Grand and Semigrand Canonical Basin-Hopping</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We introduce grand and semigrand canonical global optimization approaches using basin-hopping with an acceptance criterion based on the local contribution of each potential energy minimum to the (semi)grand potential. The method is tested using local harmonic vibrational densities of states for atomic clusters as a function of temperature and chemical potential. The predicted global minima switch from dissociated states to clusters for larger values of the chemical potential and lower temperatures, in agreement with the predictions of a model fitted to heat capacity data for selected clusters. Semigrand canonical optimization allows us to identify particularly stable compositions in multicomponent nanoalloys as a function of increasing temperature, whereas the grand canonical potential can produce a useful survey of favorable structures as a byproduct of the global optimization search.</description><subject>Algorithms</subject><subject>Alloys - chemistry</subject><subject>Chemical potential</subject><subject>Chemical Sciences</subject><subject>Clusters</subject><subject>Harmonics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Models, Molecular</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Optimization</subject><subject>or physical chemistry</subject><subject>Searching</subject><subject>Temperature</subject><subject>Theoretical and</subject><subject>Thermodynamics</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUFPAjEQhRujEUTvngxHjS5O2223ezFBomBC4kE9N0MpsGTp4nYh8d_bBSRqYjw0nbbfezPNI-ScQocCo7dofGduKtMRI4BUsgPSpCJOo1DKw31NVYOceD8H4Dxm_Jg0mJQyTThtkut-iW7crteLXWTTzamHrnCZwbx9jz5z0aBYLjM3PSVHE8y9PdvtLfL2-PDaG0TD5_5TrzuMUABUkRgxkNIkyqCVk9CdCaASEqoSQJumE85ZErNUjMSY8lgJAQqVEgxRIJWCt8jd1ne5Gi3s2FhXlZjrZZktsPzQBWb654vLZnparHWchAFUHAyutgazX7JBd6jrO2AQcwC6poG93DUri_eV9ZVeZN7YPEdni5XX9fiCyVTC_2giY86V4ElAYYuasvC-tJP9GBR0HZ0O0ek6Or2LLkguvv96L_jKKgA3W2AjLValCyH87fcJwcahbw</recordid><startdate>20160209</startdate><enddate>20160209</enddate><creator>Calvo, F</creator><creator>Schebarchov, D</creator><creator>Wales, D. J</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3555-6645</orcidid></search><sort><creationdate>20160209</creationdate><title>Grand and Semigrand Canonical Basin-Hopping</title><author>Calvo, F ; Schebarchov, D ; Wales, D. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a500t-5b2066c78cae6f61825016071870ae99f33274295b5d13485508a8852aa5a1653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Alloys - chemistry</topic><topic>Chemical potential</topic><topic>Chemical Sciences</topic><topic>Clusters</topic><topic>Harmonics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Models, Molecular</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Optimization</topic><topic>or physical chemistry</topic><topic>Searching</topic><topic>Temperature</topic><topic>Theoretical and</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvo, F</creatorcontrib><creatorcontrib>Schebarchov, D</creatorcontrib><creatorcontrib>Wales, D. J</creatorcontrib><collection>Access via American Chemical Society (ACS)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvo, F</au><au>Schebarchov, D</au><au>Wales, D. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grand and Semigrand Canonical Basin-Hopping</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-02-09</date><risdate>2016</risdate><volume>12</volume><issue>2</issue><spage>902</spage><epage>909</epage><pages>902-909</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We introduce grand and semigrand canonical global optimization approaches using basin-hopping with an acceptance criterion based on the local contribution of each potential energy minimum to the (semi)grand potential. The method is tested using local harmonic vibrational densities of states for atomic clusters as a function of temperature and chemical potential. The predicted global minima switch from dissociated states to clusters for larger values of the chemical potential and lower temperatures, in agreement with the predictions of a model fitted to heat capacity data for selected clusters. Semigrand canonical optimization allows us to identify particularly stable compositions in multicomponent nanoalloys as a function of increasing temperature, whereas the grand canonical potential can produce a useful survey of favorable structures as a byproduct of the global optimization search.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26669731</pmid><doi>10.1021/acs.jctc.5b00962</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3555-6645</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2016-02, Vol.12 (2), p.902-909 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4750084 |
source | MEDLINE; ACS Publications |
subjects | Algorithms Alloys - chemistry Chemical potential Chemical Sciences Clusters Harmonics Mathematical analysis Mathematical models Models, Molecular Nanostructure Nanostructures - chemistry Optimization or physical chemistry Searching Temperature Theoretical and Thermodynamics |
title | Grand and Semigrand Canonical Basin-Hopping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grand%20and%20Semigrand%20Canonical%20Basin-Hopping&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Calvo,%20F&rft.date=2016-02-09&rft.volume=12&rft.issue=2&rft.spage=902&rft.epage=909&rft.pages=902-909&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.5b00962&rft_dat=%3Cproquest_pubme%3E1825526960%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764338537&rft_id=info:pmid/26669731&rfr_iscdi=true |