Decavanadate Toxicology and Pharmacological Activities: V10 or V1, Both or None?
This review covers recent advances in the understanding of decavanadate toxicology and pharmacological applications. Toxicological in vivo studies point out that V10 induces several changes in several oxidative stress parameters, different from the ones observed for vanadate (V1). In in vitro studie...
Gespeichert in:
Veröffentlicht in: | Oxidative medicine and cellular longevity 2016, Vol.2016 (2016), p.1-8 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 2016 |
container_start_page | 1 |
container_title | Oxidative medicine and cellular longevity |
container_volume | 2016 |
creator | Aureliano, M. |
description | This review covers recent advances in the understanding of decavanadate toxicology and pharmacological applications. Toxicological in vivo studies point out that V10 induces several changes in several oxidative stress parameters, different from the ones observed for vanadate (V1). In in vitro studies with mitochondria, a particularly potent V10 effect, in comparison with V1, was observed in the mitochondrial depolarization (IC50 = 40 nM) and oxygen consumption (99 nM). It is suggested that mitochondrial membrane depolarization is a key event in decavanadate induction of necrotic cardiomyocytes death. Furthermore, only decavanadate species and not V1 potently inhibited myosin ATPase activity stimulated by actin (IC50 = 0.75 μM) whereas exhibiting lower inhibition activities for Ca2+-ATPase activity (15 μM) and actin polymerization (17 μM). Because both calcium pump and actin decavanadate interactions lead to its stabilization, it is likely that V10 interacts at specific locations with these proteins that protect against hydrolysis but, on the other hand, it may induce V10 reduction to oxidovanadium(IV). Putting it all together, it is suggested that the pharmacological applications of V10 species and compounds whose mechanism of action is still to be clarified might involve besides V10 and V1 also vanadium(IV) species. |
doi_str_mv | 10.1155/2016/6103457 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4745863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3938299231</sourcerecordid><originalsourceid>FETCH-LOGICAL-e3067-658aa0f7127fea6d067903645e1967dd39d20e7f37770e403a27fa94d0bf9a913</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2KqsC2N84oEpdKdMtM7NhrDq0o_ZQQcACu1hBPWKNsvE2y2-5_X6dsF-hpRuOf3jzPE2IP4T1iURzlgPpII0hVmBdiB63Kx2Ct2tr0ANtit-vuAbTMFb4S27m2oFDrHXH5mUtaUkOees6u4u9QxjrerTJqfHY5pXZGfwehpDo7KfuwDH3g7ji7Qchim8q77FPsp0N_Hhv--Fq8rKju-M26jsT11y9Xp9_HZxfffpyenI1ZgjZjXUyIoDKYm4pJ-zSzILUqGK023kvrc2BTSWMMsAJJCSSrPNxWlizKkfjwoDtf3M7Yl9z0LdVu3oYZtSsXKbjnL02Yuru4dMqoYqJlEni7FmjjzwV3vZuFruS6pobjonNokiXUqFRCD_5D7-OibdL3BgoVYJ4PjvafOtpY-XfsBBw-ANPQePoVNgSCG6J0Q5RuHeWjHCeGK3qkMW2cKPkHloyVNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761401221</pqid></control><display><type>article</type><title>Decavanadate Toxicology and Pharmacological Activities: V10 or V1, Both or None?</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Aureliano, M.</creator><contributor>Llopis, Juan</contributor><creatorcontrib>Aureliano, M. ; Llopis, Juan</creatorcontrib><description>This review covers recent advances in the understanding of decavanadate toxicology and pharmacological applications. Toxicological in vivo studies point out that V10 induces several changes in several oxidative stress parameters, different from the ones observed for vanadate (V1). In in vitro studies with mitochondria, a particularly potent V10 effect, in comparison with V1, was observed in the mitochondrial depolarization (IC50 = 40 nM) and oxygen consumption (99 nM). It is suggested that mitochondrial membrane depolarization is a key event in decavanadate induction of necrotic cardiomyocytes death. Furthermore, only decavanadate species and not V1 potently inhibited myosin ATPase activity stimulated by actin (IC50 = 0.75 μM) whereas exhibiting lower inhibition activities for Ca2+-ATPase activity (15 μM) and actin polymerization (17 μM). Because both calcium pump and actin decavanadate interactions lead to its stabilization, it is likely that V10 interacts at specific locations with these proteins that protect against hydrolysis but, on the other hand, it may induce V10 reduction to oxidovanadium(IV). Putting it all together, it is suggested that the pharmacological applications of V10 species and compounds whose mechanism of action is still to be clarified might involve besides V10 and V1 also vanadium(IV) species.</description><identifier>ISSN: 1942-0900</identifier><identifier>EISSN: 1942-0994</identifier><identifier>DOI: 10.1155/2016/6103457</identifier><identifier>PMID: 26904166</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Animals ; Antioxidants ; Apoptosis - drug effects ; Decomposition ; Enzymes ; Humans ; Lipid peroxidation ; Lipids ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Muscle Contraction - drug effects ; Oxidation ; Oxidative stress ; Oxidative Stress - drug effects ; Phosphatase ; Review ; Rodents ; Sarcoplasmic Reticulum - drug effects ; Sarcoplasmic Reticulum - metabolism ; Studies ; Toxicity ; Toxicology ; Vanadates - pharmacology ; Vanadates - therapeutic use ; Vanadates - toxicity</subject><ispartof>Oxidative medicine and cellular longevity, 2016, Vol.2016 (2016), p.1-8</ispartof><rights>Copyright © 2016 M. Aureliano.</rights><rights>Copyright © 2016 M. Aureliano. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2016 M. Aureliano. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745863/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745863/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26904166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Llopis, Juan</contributor><creatorcontrib>Aureliano, M.</creatorcontrib><title>Decavanadate Toxicology and Pharmacological Activities: V10 or V1, Both or None?</title><title>Oxidative medicine and cellular longevity</title><addtitle>Oxid Med Cell Longev</addtitle><description>This review covers recent advances in the understanding of decavanadate toxicology and pharmacological applications. Toxicological in vivo studies point out that V10 induces several changes in several oxidative stress parameters, different from the ones observed for vanadate (V1). In in vitro studies with mitochondria, a particularly potent V10 effect, in comparison with V1, was observed in the mitochondrial depolarization (IC50 = 40 nM) and oxygen consumption (99 nM). It is suggested that mitochondrial membrane depolarization is a key event in decavanadate induction of necrotic cardiomyocytes death. Furthermore, only decavanadate species and not V1 potently inhibited myosin ATPase activity stimulated by actin (IC50 = 0.75 μM) whereas exhibiting lower inhibition activities for Ca2+-ATPase activity (15 μM) and actin polymerization (17 μM). Because both calcium pump and actin decavanadate interactions lead to its stabilization, it is likely that V10 interacts at specific locations with these proteins that protect against hydrolysis but, on the other hand, it may induce V10 reduction to oxidovanadium(IV). Putting it all together, it is suggested that the pharmacological applications of V10 species and compounds whose mechanism of action is still to be clarified might involve besides V10 and V1 also vanadium(IV) species.</description><subject>Animals</subject><subject>Antioxidants</subject><subject>Apoptosis - drug effects</subject><subject>Decomposition</subject><subject>Enzymes</subject><subject>Humans</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Muscle Contraction - drug effects</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Phosphatase</subject><subject>Review</subject><subject>Rodents</subject><subject>Sarcoplasmic Reticulum - drug effects</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Studies</subject><subject>Toxicity</subject><subject>Toxicology</subject><subject>Vanadates - pharmacology</subject><subject>Vanadates - therapeutic use</subject><subject>Vanadates - toxicity</subject><issn>1942-0900</issn><issn>1942-0994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1P3DAQxa2KqsC2N84oEpdKdMtM7NhrDq0o_ZQQcACu1hBPWKNsvE2y2-5_X6dsF-hpRuOf3jzPE2IP4T1iURzlgPpII0hVmBdiB63Kx2Ct2tr0ANtit-vuAbTMFb4S27m2oFDrHXH5mUtaUkOees6u4u9QxjrerTJqfHY5pXZGfwehpDo7KfuwDH3g7ji7Qchim8q77FPsp0N_Hhv--Fq8rKju-M26jsT11y9Xp9_HZxfffpyenI1ZgjZjXUyIoDKYm4pJ-zSzILUqGK023kvrc2BTSWMMsAJJCSSrPNxWlizKkfjwoDtf3M7Yl9z0LdVu3oYZtSsXKbjnL02Yuru4dMqoYqJlEni7FmjjzwV3vZuFruS6pobjonNokiXUqFRCD_5D7-OibdL3BgoVYJ4PjvafOtpY-XfsBBw-ANPQePoVNgSCG6J0Q5RuHeWjHCeGK3qkMW2cKPkHloyVNw</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Aureliano, M.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2016</creationdate><title>Decavanadate Toxicology and Pharmacological Activities: V10 or V1, Both or None?</title><author>Aureliano, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e3067-658aa0f7127fea6d067903645e1967dd39d20e7f37770e403a27fa94d0bf9a913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Antioxidants</topic><topic>Apoptosis - drug effects</topic><topic>Decomposition</topic><topic>Enzymes</topic><topic>Humans</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Muscle Contraction - drug effects</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Phosphatase</topic><topic>Review</topic><topic>Rodents</topic><topic>Sarcoplasmic Reticulum - drug effects</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Studies</topic><topic>Toxicity</topic><topic>Toxicology</topic><topic>Vanadates - pharmacology</topic><topic>Vanadates - therapeutic use</topic><topic>Vanadates - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aureliano, M.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oxidative medicine and cellular longevity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aureliano, M.</au><au>Llopis, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decavanadate Toxicology and Pharmacological Activities: V10 or V1, Both or None?</atitle><jtitle>Oxidative medicine and cellular longevity</jtitle><addtitle>Oxid Med Cell Longev</addtitle><date>2016</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1942-0900</issn><eissn>1942-0994</eissn><abstract>This review covers recent advances in the understanding of decavanadate toxicology and pharmacological applications. Toxicological in vivo studies point out that V10 induces several changes in several oxidative stress parameters, different from the ones observed for vanadate (V1). In in vitro studies with mitochondria, a particularly potent V10 effect, in comparison with V1, was observed in the mitochondrial depolarization (IC50 = 40 nM) and oxygen consumption (99 nM). It is suggested that mitochondrial membrane depolarization is a key event in decavanadate induction of necrotic cardiomyocytes death. Furthermore, only decavanadate species and not V1 potently inhibited myosin ATPase activity stimulated by actin (IC50 = 0.75 μM) whereas exhibiting lower inhibition activities for Ca2+-ATPase activity (15 μM) and actin polymerization (17 μM). Because both calcium pump and actin decavanadate interactions lead to its stabilization, it is likely that V10 interacts at specific locations with these proteins that protect against hydrolysis but, on the other hand, it may induce V10 reduction to oxidovanadium(IV). Putting it all together, it is suggested that the pharmacological applications of V10 species and compounds whose mechanism of action is still to be clarified might involve besides V10 and V1 also vanadium(IV) species.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>26904166</pmid><doi>10.1155/2016/6103457</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-0900 |
ispartof | Oxidative medicine and cellular longevity, 2016, Vol.2016 (2016), p.1-8 |
issn | 1942-0900 1942-0994 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4745863 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Antioxidants Apoptosis - drug effects Decomposition Enzymes Humans Lipid peroxidation Lipids Mitochondria Mitochondria - drug effects Mitochondria - metabolism Muscle Contraction - drug effects Oxidation Oxidative stress Oxidative Stress - drug effects Phosphatase Review Rodents Sarcoplasmic Reticulum - drug effects Sarcoplasmic Reticulum - metabolism Studies Toxicity Toxicology Vanadates - pharmacology Vanadates - therapeutic use Vanadates - toxicity |
title | Decavanadate Toxicology and Pharmacological Activities: V10 or V1, Both or None? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decavanadate%20Toxicology%20and%20Pharmacological%20Activities:%20V10%20or%20V1,%20Both%20or%20None?&rft.jtitle=Oxidative%20medicine%20and%20cellular%20longevity&rft.au=Aureliano,%20M.&rft.date=2016&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1942-0900&rft.eissn=1942-0994&rft_id=info:doi/10.1155/2016/6103457&rft_dat=%3Cproquest_pubme%3E3938299231%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761401221&rft_id=info:pmid/26904166&rfr_iscdi=true |