Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits
Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-02, Vol.6 (1), p.20784-20784, Article 20784 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20784 |
---|---|
container_issue | 1 |
container_start_page | 20784 |
container_title | Scientific reports |
container_volume | 6 |
creator | Jiang, Xincheng Lin, Houwei Jiang, Dapeng Xu, Guofeng Fang, Xiaoliang He, Lei Xu, Maosheng Tang, Bingqiang Wang, Zhiyong Cui, Daxiang Chen, Fang Geng, Hongquan |
description | Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-PLGA nanoparticle thermo-sensitive gel system (i.e., BAM with incorporated VEGF and bFGF-loaded PLGA nanoparticles and mixed with a hydrophilic gel) to promote bladder tissue regeneration in a rabbit model. At 4 and 12 weeks after surgery, contracture rate assessment and histological examination were conducted to evaluate bladder tissue regeneration. The results indicated that the functional composite scaffold continuously and effectively released VEGF and bFGF and promoted bladder reconstruction with a significant decrease in graft contracture. In addition, the number and arrangement of regenerated urothelial cells and smooth muscle cells as well as microvascular density and maturity were improved in the VEGF/bFGF nanoparticle group compared with the single factor VEGF or bFGF nanoparticle group and BAM alone. The nanoparticle thermo-sensitive gel system, which exhibited favourable performance, may effectively inhibit graft contracture and promote bladder tissue regeneration in rabbits. |
doi_str_mv | 10.1038/srep20784 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4745101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1764138996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ba89cf8da3d6bc102aa28ebc62f98afe37ea0eadb19305ee82e994577b817e083</originalsourceid><addsrcrecordid>eNplkcFuEzEQhleIilZtD7wAssQFkBZsr3fXe0EKUROQguBAe7Vm7XHqamMHezdSn4JXxlFKFMAXjzSfvxnrL4qXjL5ntJIfUsQtp60Uz4oLTkVd8orz5yf1eXGd0gPNp-adYN2L4pw3shac0ovi1zyUBge3w_hIgiV3N8sFAW9Iv8jFzgEB8n21nBEPPmwhjk4PWG6CcdahIZ9mX4kNkaC1qMdsITr4MYIep4jE-XvXu9EFv1dHXKPHCGN-1w9gDEYyupSmPUgi9BlNV8WZhSHh9dN9Wdwubn7MP5erb8sv89mq1KKSY9mD7LSVBirT9JpRDsAl9rrhtpNgsWoRKILpWVfRGlFy7DpRt20vWYtUVpfFx4N3O_UbNBr3Ww9qG90G4qMK4NTfHe_u1TrslGhFzSjLgjdPghh-TphGtXFJ4zCAxzAlxdpGsEp2XZPR1_-gD2GKPn9PsQxQ1jBRZ-rtgdIxpByqPS7DqNonrY5JZ_bV6fZH8k-uGXh3AFJu-TXGk5H_2X4DpF60RA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899016145</pqid></control><display><type>article</type><title>Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jiang, Xincheng ; Lin, Houwei ; Jiang, Dapeng ; Xu, Guofeng ; Fang, Xiaoliang ; He, Lei ; Xu, Maosheng ; Tang, Bingqiang ; Wang, Zhiyong ; Cui, Daxiang ; Chen, Fang ; Geng, Hongquan</creator><creatorcontrib>Jiang, Xincheng ; Lin, Houwei ; Jiang, Dapeng ; Xu, Guofeng ; Fang, Xiaoliang ; He, Lei ; Xu, Maosheng ; Tang, Bingqiang ; Wang, Zhiyong ; Cui, Daxiang ; Chen, Fang ; Geng, Hongquan</creatorcontrib><description>Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-PLGA nanoparticle thermo-sensitive gel system (i.e., BAM with incorporated VEGF and bFGF-loaded PLGA nanoparticles and mixed with a hydrophilic gel) to promote bladder tissue regeneration in a rabbit model. At 4 and 12 weeks after surgery, contracture rate assessment and histological examination were conducted to evaluate bladder tissue regeneration. The results indicated that the functional composite scaffold continuously and effectively released VEGF and bFGF and promoted bladder reconstruction with a significant decrease in graft contracture. In addition, the number and arrangement of regenerated urothelial cells and smooth muscle cells as well as microvascular density and maturity were improved in the VEGF/bFGF nanoparticle group compared with the single factor VEGF or bFGF nanoparticle group and BAM alone. The nanoparticle thermo-sensitive gel system, which exhibited favourable performance, may effectively inhibit graft contracture and promote bladder tissue regeneration in rabbits.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep20784</identifier><identifier>PMID: 26854200</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject><![CDATA[631/61/2035 ; 639/166/985 ; 692/4025/1334 ; 82/51 ; Aged ; Animals ; Biomaterials ; Bladder ; Contracture - prevention & control ; Fibroblast growth factor 2 ; Humanities and Social Sciences ; Humans ; Lactic Acid - administration & dosage ; Male ; Microvasculature ; Models, Animal ; multidisciplinary ; Nanoparticles ; Nanoparticles - administration & dosage ; Oligopeptides - administration & dosage ; Polyglycolic Acid - administration & dosage ; Polylactide-co-glycolide ; Rabbits ; Science ; Smooth muscle ; Surgery ; Tissue engineering ; Treatment Outcome ; Urinary bladder ; Urinary Bladder - drug effects ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - administration & dosage]]></subject><ispartof>Scientific reports, 2016-02, Vol.6 (1), p.20784-20784, Article 20784</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ba89cf8da3d6bc102aa28ebc62f98afe37ea0eadb19305ee82e994577b817e083</citedby><cites>FETCH-LOGICAL-c438t-ba89cf8da3d6bc102aa28ebc62f98afe37ea0eadb19305ee82e994577b817e083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745101/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745101/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26854200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Xincheng</creatorcontrib><creatorcontrib>Lin, Houwei</creatorcontrib><creatorcontrib>Jiang, Dapeng</creatorcontrib><creatorcontrib>Xu, Guofeng</creatorcontrib><creatorcontrib>Fang, Xiaoliang</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><creatorcontrib>Xu, Maosheng</creatorcontrib><creatorcontrib>Tang, Bingqiang</creatorcontrib><creatorcontrib>Wang, Zhiyong</creatorcontrib><creatorcontrib>Cui, Daxiang</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Geng, Hongquan</creatorcontrib><title>Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-PLGA nanoparticle thermo-sensitive gel system (i.e., BAM with incorporated VEGF and bFGF-loaded PLGA nanoparticles and mixed with a hydrophilic gel) to promote bladder tissue regeneration in a rabbit model. At 4 and 12 weeks after surgery, contracture rate assessment and histological examination were conducted to evaluate bladder tissue regeneration. The results indicated that the functional composite scaffold continuously and effectively released VEGF and bFGF and promoted bladder reconstruction with a significant decrease in graft contracture. In addition, the number and arrangement of regenerated urothelial cells and smooth muscle cells as well as microvascular density and maturity were improved in the VEGF/bFGF nanoparticle group compared with the single factor VEGF or bFGF nanoparticle group and BAM alone. The nanoparticle thermo-sensitive gel system, which exhibited favourable performance, may effectively inhibit graft contracture and promote bladder tissue regeneration in rabbits.</description><subject>631/61/2035</subject><subject>639/166/985</subject><subject>692/4025/1334</subject><subject>82/51</subject><subject>Aged</subject><subject>Animals</subject><subject>Biomaterials</subject><subject>Bladder</subject><subject>Contracture - prevention & control</subject><subject>Fibroblast growth factor 2</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lactic Acid - administration & dosage</subject><subject>Male</subject><subject>Microvasculature</subject><subject>Models, Animal</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Nanoparticles - administration & dosage</subject><subject>Oligopeptides - administration & dosage</subject><subject>Polyglycolic Acid - administration & dosage</subject><subject>Polylactide-co-glycolide</subject><subject>Rabbits</subject><subject>Science</subject><subject>Smooth muscle</subject><subject>Surgery</subject><subject>Tissue engineering</subject><subject>Treatment Outcome</subject><subject>Urinary bladder</subject><subject>Urinary Bladder - drug effects</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - administration & dosage</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkcFuEzEQhleIilZtD7wAssQFkBZsr3fXe0EKUROQguBAe7Vm7XHqamMHezdSn4JXxlFKFMAXjzSfvxnrL4qXjL5ntJIfUsQtp60Uz4oLTkVd8orz5yf1eXGd0gPNp-adYN2L4pw3shac0ovi1zyUBge3w_hIgiV3N8sFAW9Iv8jFzgEB8n21nBEPPmwhjk4PWG6CcdahIZ9mX4kNkaC1qMdsITr4MYIep4jE-XvXu9EFv1dHXKPHCGN-1w9gDEYyupSmPUgi9BlNV8WZhSHh9dN9Wdwubn7MP5erb8sv89mq1KKSY9mD7LSVBirT9JpRDsAl9rrhtpNgsWoRKILpWVfRGlFy7DpRt20vWYtUVpfFx4N3O_UbNBr3Ww9qG90G4qMK4NTfHe_u1TrslGhFzSjLgjdPghh-TphGtXFJ4zCAxzAlxdpGsEp2XZPR1_-gD2GKPn9PsQxQ1jBRZ-rtgdIxpByqPS7DqNonrY5JZ_bV6fZH8k-uGXh3AFJu-TXGk5H_2X4DpF60RA</recordid><startdate>20160208</startdate><enddate>20160208</enddate><creator>Jiang, Xincheng</creator><creator>Lin, Houwei</creator><creator>Jiang, Dapeng</creator><creator>Xu, Guofeng</creator><creator>Fang, Xiaoliang</creator><creator>He, Lei</creator><creator>Xu, Maosheng</creator><creator>Tang, Bingqiang</creator><creator>Wang, Zhiyong</creator><creator>Cui, Daxiang</creator><creator>Chen, Fang</creator><creator>Geng, Hongquan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160208</creationdate><title>Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits</title><author>Jiang, Xincheng ; Lin, Houwei ; Jiang, Dapeng ; Xu, Guofeng ; Fang, Xiaoliang ; He, Lei ; Xu, Maosheng ; Tang, Bingqiang ; Wang, Zhiyong ; Cui, Daxiang ; Chen, Fang ; Geng, Hongquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ba89cf8da3d6bc102aa28ebc62f98afe37ea0eadb19305ee82e994577b817e083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/61/2035</topic><topic>639/166/985</topic><topic>692/4025/1334</topic><topic>82/51</topic><topic>Aged</topic><topic>Animals</topic><topic>Biomaterials</topic><topic>Bladder</topic><topic>Contracture - prevention & control</topic><topic>Fibroblast growth factor 2</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lactic Acid - administration & dosage</topic><topic>Male</topic><topic>Microvasculature</topic><topic>Models, Animal</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Nanoparticles - administration & dosage</topic><topic>Oligopeptides - administration & dosage</topic><topic>Polyglycolic Acid - administration & dosage</topic><topic>Polylactide-co-glycolide</topic><topic>Rabbits</topic><topic>Science</topic><topic>Smooth muscle</topic><topic>Surgery</topic><topic>Tissue engineering</topic><topic>Treatment Outcome</topic><topic>Urinary bladder</topic><topic>Urinary Bladder - drug effects</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - administration & dosage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xincheng</creatorcontrib><creatorcontrib>Lin, Houwei</creatorcontrib><creatorcontrib>Jiang, Dapeng</creatorcontrib><creatorcontrib>Xu, Guofeng</creatorcontrib><creatorcontrib>Fang, Xiaoliang</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><creatorcontrib>Xu, Maosheng</creatorcontrib><creatorcontrib>Tang, Bingqiang</creatorcontrib><creatorcontrib>Wang, Zhiyong</creatorcontrib><creatorcontrib>Cui, Daxiang</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Geng, Hongquan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xincheng</au><au>Lin, Houwei</au><au>Jiang, Dapeng</au><au>Xu, Guofeng</au><au>Fang, Xiaoliang</au><au>He, Lei</au><au>Xu, Maosheng</au><au>Tang, Bingqiang</au><au>Wang, Zhiyong</au><au>Cui, Daxiang</au><au>Chen, Fang</au><au>Geng, Hongquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-02-08</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>20784</spage><epage>20784</epage><pages>20784-20784</pages><artnum>20784</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-PLGA nanoparticle thermo-sensitive gel system (i.e., BAM with incorporated VEGF and bFGF-loaded PLGA nanoparticles and mixed with a hydrophilic gel) to promote bladder tissue regeneration in a rabbit model. At 4 and 12 weeks after surgery, contracture rate assessment and histological examination were conducted to evaluate bladder tissue regeneration. The results indicated that the functional composite scaffold continuously and effectively released VEGF and bFGF and promoted bladder reconstruction with a significant decrease in graft contracture. In addition, the number and arrangement of regenerated urothelial cells and smooth muscle cells as well as microvascular density and maturity were improved in the VEGF/bFGF nanoparticle group compared with the single factor VEGF or bFGF nanoparticle group and BAM alone. The nanoparticle thermo-sensitive gel system, which exhibited favourable performance, may effectively inhibit graft contracture and promote bladder tissue regeneration in rabbits.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26854200</pmid><doi>10.1038/srep20784</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-02, Vol.6 (1), p.20784-20784, Article 20784 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4745101 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/61/2035 639/166/985 692/4025/1334 82/51 Aged Animals Biomaterials Bladder Contracture - prevention & control Fibroblast growth factor 2 Humanities and Social Sciences Humans Lactic Acid - administration & dosage Male Microvasculature Models, Animal multidisciplinary Nanoparticles Nanoparticles - administration & dosage Oligopeptides - administration & dosage Polyglycolic Acid - administration & dosage Polylactide-co-glycolide Rabbits Science Smooth muscle Surgery Tissue engineering Treatment Outcome Urinary bladder Urinary Bladder - drug effects Vascular endothelial growth factor Vascular Endothelial Growth Factor A - administration & dosage |
title | Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-delivery%20of%20VEGF%20and%20bFGF%20via%20a%20PLGA%20nanoparticle-modified%20BAM%20for%20effective%20contracture%20inhibition%20of%20regenerated%20bladder%20tissue%20in%20rabbits&rft.jtitle=Scientific%20reports&rft.au=Jiang,%20Xincheng&rft.date=2016-02-08&rft.volume=6&rft.issue=1&rft.spage=20784&rft.epage=20784&rft.pages=20784-20784&rft.artnum=20784&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep20784&rft_dat=%3Cproquest_pubme%3E1764138996%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899016145&rft_id=info:pmid/26854200&rfr_iscdi=true |