Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits

Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-02, Vol.6 (1), p.20784-20784, Article 20784
Hauptverfasser: Jiang, Xincheng, Lin, Houwei, Jiang, Dapeng, Xu, Guofeng, Fang, Xiaoliang, He, Lei, Xu, Maosheng, Tang, Bingqiang, Wang, Zhiyong, Cui, Daxiang, Chen, Fang, Geng, Hongquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20784
container_issue 1
container_start_page 20784
container_title Scientific reports
container_volume 6
creator Jiang, Xincheng
Lin, Houwei
Jiang, Dapeng
Xu, Guofeng
Fang, Xiaoliang
He, Lei
Xu, Maosheng
Tang, Bingqiang
Wang, Zhiyong
Cui, Daxiang
Chen, Fang
Geng, Hongquan
description Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-PLGA nanoparticle thermo-sensitive gel system (i.e., BAM with incorporated VEGF and bFGF-loaded PLGA nanoparticles and mixed with a hydrophilic gel) to promote bladder tissue regeneration in a rabbit model. At 4 and 12 weeks after surgery, contracture rate assessment and histological examination were conducted to evaluate bladder tissue regeneration. The results indicated that the functional composite scaffold continuously and effectively released VEGF and bFGF and promoted bladder reconstruction with a significant decrease in graft contracture. In addition, the number and arrangement of regenerated urothelial cells and smooth muscle cells as well as microvascular density and maturity were improved in the VEGF/bFGF nanoparticle group compared with the single factor VEGF or bFGF nanoparticle group and BAM alone. The nanoparticle thermo-sensitive gel system, which exhibited favourable performance, may effectively inhibit graft contracture and promote bladder tissue regeneration in rabbits.
doi_str_mv 10.1038/srep20784
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4745101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1764138996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ba89cf8da3d6bc102aa28ebc62f98afe37ea0eadb19305ee82e994577b817e083</originalsourceid><addsrcrecordid>eNplkcFuEzEQhleIilZtD7wAssQFkBZsr3fXe0EKUROQguBAe7Vm7XHqamMHezdSn4JXxlFKFMAXjzSfvxnrL4qXjL5ntJIfUsQtp60Uz4oLTkVd8orz5yf1eXGd0gPNp-adYN2L4pw3shac0ovi1zyUBge3w_hIgiV3N8sFAW9Iv8jFzgEB8n21nBEPPmwhjk4PWG6CcdahIZ9mX4kNkaC1qMdsITr4MYIep4jE-XvXu9EFv1dHXKPHCGN-1w9gDEYyupSmPUgi9BlNV8WZhSHh9dN9Wdwubn7MP5erb8sv89mq1KKSY9mD7LSVBirT9JpRDsAl9rrhtpNgsWoRKILpWVfRGlFy7DpRt20vWYtUVpfFx4N3O_UbNBr3Ww9qG90G4qMK4NTfHe_u1TrslGhFzSjLgjdPghh-TphGtXFJ4zCAxzAlxdpGsEp2XZPR1_-gD2GKPn9PsQxQ1jBRZ-rtgdIxpByqPS7DqNonrY5JZ_bV6fZH8k-uGXh3AFJu-TXGk5H_2X4DpF60RA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899016145</pqid></control><display><type>article</type><title>Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jiang, Xincheng ; Lin, Houwei ; Jiang, Dapeng ; Xu, Guofeng ; Fang, Xiaoliang ; He, Lei ; Xu, Maosheng ; Tang, Bingqiang ; Wang, Zhiyong ; Cui, Daxiang ; Chen, Fang ; Geng, Hongquan</creator><creatorcontrib>Jiang, Xincheng ; Lin, Houwei ; Jiang, Dapeng ; Xu, Guofeng ; Fang, Xiaoliang ; He, Lei ; Xu, Maosheng ; Tang, Bingqiang ; Wang, Zhiyong ; Cui, Daxiang ; Chen, Fang ; Geng, Hongquan</creatorcontrib><description>Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-PLGA nanoparticle thermo-sensitive gel system (i.e., BAM with incorporated VEGF and bFGF-loaded PLGA nanoparticles and mixed with a hydrophilic gel) to promote bladder tissue regeneration in a rabbit model. At 4 and 12 weeks after surgery, contracture rate assessment and histological examination were conducted to evaluate bladder tissue regeneration. The results indicated that the functional composite scaffold continuously and effectively released VEGF and bFGF and promoted bladder reconstruction with a significant decrease in graft contracture. In addition, the number and arrangement of regenerated urothelial cells and smooth muscle cells as well as microvascular density and maturity were improved in the VEGF/bFGF nanoparticle group compared with the single factor VEGF or bFGF nanoparticle group and BAM alone. The nanoparticle thermo-sensitive gel system, which exhibited favourable performance, may effectively inhibit graft contracture and promote bladder tissue regeneration in rabbits.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep20784</identifier><identifier>PMID: 26854200</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject><![CDATA[631/61/2035 ; 639/166/985 ; 692/4025/1334 ; 82/51 ; Aged ; Animals ; Biomaterials ; Bladder ; Contracture - prevention & control ; Fibroblast growth factor 2 ; Humanities and Social Sciences ; Humans ; Lactic Acid - administration & dosage ; Male ; Microvasculature ; Models, Animal ; multidisciplinary ; Nanoparticles ; Nanoparticles - administration & dosage ; Oligopeptides - administration & dosage ; Polyglycolic Acid - administration & dosage ; Polylactide-co-glycolide ; Rabbits ; Science ; Smooth muscle ; Surgery ; Tissue engineering ; Treatment Outcome ; Urinary bladder ; Urinary Bladder - drug effects ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - administration & dosage]]></subject><ispartof>Scientific reports, 2016-02, Vol.6 (1), p.20784-20784, Article 20784</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ba89cf8da3d6bc102aa28ebc62f98afe37ea0eadb19305ee82e994577b817e083</citedby><cites>FETCH-LOGICAL-c438t-ba89cf8da3d6bc102aa28ebc62f98afe37ea0eadb19305ee82e994577b817e083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745101/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745101/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26854200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Xincheng</creatorcontrib><creatorcontrib>Lin, Houwei</creatorcontrib><creatorcontrib>Jiang, Dapeng</creatorcontrib><creatorcontrib>Xu, Guofeng</creatorcontrib><creatorcontrib>Fang, Xiaoliang</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><creatorcontrib>Xu, Maosheng</creatorcontrib><creatorcontrib>Tang, Bingqiang</creatorcontrib><creatorcontrib>Wang, Zhiyong</creatorcontrib><creatorcontrib>Cui, Daxiang</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Geng, Hongquan</creatorcontrib><title>Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-PLGA nanoparticle thermo-sensitive gel system (i.e., BAM with incorporated VEGF and bFGF-loaded PLGA nanoparticles and mixed with a hydrophilic gel) to promote bladder tissue regeneration in a rabbit model. At 4 and 12 weeks after surgery, contracture rate assessment and histological examination were conducted to evaluate bladder tissue regeneration. The results indicated that the functional composite scaffold continuously and effectively released VEGF and bFGF and promoted bladder reconstruction with a significant decrease in graft contracture. In addition, the number and arrangement of regenerated urothelial cells and smooth muscle cells as well as microvascular density and maturity were improved in the VEGF/bFGF nanoparticle group compared with the single factor VEGF or bFGF nanoparticle group and BAM alone. The nanoparticle thermo-sensitive gel system, which exhibited favourable performance, may effectively inhibit graft contracture and promote bladder tissue regeneration in rabbits.</description><subject>631/61/2035</subject><subject>639/166/985</subject><subject>692/4025/1334</subject><subject>82/51</subject><subject>Aged</subject><subject>Animals</subject><subject>Biomaterials</subject><subject>Bladder</subject><subject>Contracture - prevention &amp; control</subject><subject>Fibroblast growth factor 2</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lactic Acid - administration &amp; dosage</subject><subject>Male</subject><subject>Microvasculature</subject><subject>Models, Animal</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Nanoparticles - administration &amp; dosage</subject><subject>Oligopeptides - administration &amp; dosage</subject><subject>Polyglycolic Acid - administration &amp; dosage</subject><subject>Polylactide-co-glycolide</subject><subject>Rabbits</subject><subject>Science</subject><subject>Smooth muscle</subject><subject>Surgery</subject><subject>Tissue engineering</subject><subject>Treatment Outcome</subject><subject>Urinary bladder</subject><subject>Urinary Bladder - drug effects</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - administration &amp; dosage</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkcFuEzEQhleIilZtD7wAssQFkBZsr3fXe0EKUROQguBAe7Vm7XHqamMHezdSn4JXxlFKFMAXjzSfvxnrL4qXjL5ntJIfUsQtp60Uz4oLTkVd8orz5yf1eXGd0gPNp-adYN2L4pw3shac0ovi1zyUBge3w_hIgiV3N8sFAW9Iv8jFzgEB8n21nBEPPmwhjk4PWG6CcdahIZ9mX4kNkaC1qMdsITr4MYIep4jE-XvXu9EFv1dHXKPHCGN-1w9gDEYyupSmPUgi9BlNV8WZhSHh9dN9Wdwubn7MP5erb8sv89mq1KKSY9mD7LSVBirT9JpRDsAl9rrhtpNgsWoRKILpWVfRGlFy7DpRt20vWYtUVpfFx4N3O_UbNBr3Ww9qG90G4qMK4NTfHe_u1TrslGhFzSjLgjdPghh-TphGtXFJ4zCAxzAlxdpGsEp2XZPR1_-gD2GKPn9PsQxQ1jBRZ-rtgdIxpByqPS7DqNonrY5JZ_bV6fZH8k-uGXh3AFJu-TXGk5H_2X4DpF60RA</recordid><startdate>20160208</startdate><enddate>20160208</enddate><creator>Jiang, Xincheng</creator><creator>Lin, Houwei</creator><creator>Jiang, Dapeng</creator><creator>Xu, Guofeng</creator><creator>Fang, Xiaoliang</creator><creator>He, Lei</creator><creator>Xu, Maosheng</creator><creator>Tang, Bingqiang</creator><creator>Wang, Zhiyong</creator><creator>Cui, Daxiang</creator><creator>Chen, Fang</creator><creator>Geng, Hongquan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160208</creationdate><title>Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits</title><author>Jiang, Xincheng ; Lin, Houwei ; Jiang, Dapeng ; Xu, Guofeng ; Fang, Xiaoliang ; He, Lei ; Xu, Maosheng ; Tang, Bingqiang ; Wang, Zhiyong ; Cui, Daxiang ; Chen, Fang ; Geng, Hongquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ba89cf8da3d6bc102aa28ebc62f98afe37ea0eadb19305ee82e994577b817e083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/61/2035</topic><topic>639/166/985</topic><topic>692/4025/1334</topic><topic>82/51</topic><topic>Aged</topic><topic>Animals</topic><topic>Biomaterials</topic><topic>Bladder</topic><topic>Contracture - prevention &amp; control</topic><topic>Fibroblast growth factor 2</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lactic Acid - administration &amp; dosage</topic><topic>Male</topic><topic>Microvasculature</topic><topic>Models, Animal</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Nanoparticles - administration &amp; dosage</topic><topic>Oligopeptides - administration &amp; dosage</topic><topic>Polyglycolic Acid - administration &amp; dosage</topic><topic>Polylactide-co-glycolide</topic><topic>Rabbits</topic><topic>Science</topic><topic>Smooth muscle</topic><topic>Surgery</topic><topic>Tissue engineering</topic><topic>Treatment Outcome</topic><topic>Urinary bladder</topic><topic>Urinary Bladder - drug effects</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - administration &amp; dosage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xincheng</creatorcontrib><creatorcontrib>Lin, Houwei</creatorcontrib><creatorcontrib>Jiang, Dapeng</creatorcontrib><creatorcontrib>Xu, Guofeng</creatorcontrib><creatorcontrib>Fang, Xiaoliang</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><creatorcontrib>Xu, Maosheng</creatorcontrib><creatorcontrib>Tang, Bingqiang</creatorcontrib><creatorcontrib>Wang, Zhiyong</creatorcontrib><creatorcontrib>Cui, Daxiang</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Geng, Hongquan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xincheng</au><au>Lin, Houwei</au><au>Jiang, Dapeng</au><au>Xu, Guofeng</au><au>Fang, Xiaoliang</au><au>He, Lei</au><au>Xu, Maosheng</au><au>Tang, Bingqiang</au><au>Wang, Zhiyong</au><au>Cui, Daxiang</au><au>Chen, Fang</au><au>Geng, Hongquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-02-08</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>20784</spage><epage>20784</epage><pages>20784-20784</pages><artnum>20784</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Graft contracture is a common problem associated with the regeneration processes of tissue-engineered bladders. Currently, most strategies used for incorporating bioactive molecules into biomaterial designs do not work during all phases of tissue regeneration. In this study, we used a growth factor-PLGA nanoparticle thermo-sensitive gel system (i.e., BAM with incorporated VEGF and bFGF-loaded PLGA nanoparticles and mixed with a hydrophilic gel) to promote bladder tissue regeneration in a rabbit model. At 4 and 12 weeks after surgery, contracture rate assessment and histological examination were conducted to evaluate bladder tissue regeneration. The results indicated that the functional composite scaffold continuously and effectively released VEGF and bFGF and promoted bladder reconstruction with a significant decrease in graft contracture. In addition, the number and arrangement of regenerated urothelial cells and smooth muscle cells as well as microvascular density and maturity were improved in the VEGF/bFGF nanoparticle group compared with the single factor VEGF or bFGF nanoparticle group and BAM alone. The nanoparticle thermo-sensitive gel system, which exhibited favourable performance, may effectively inhibit graft contracture and promote bladder tissue regeneration in rabbits.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26854200</pmid><doi>10.1038/srep20784</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-02, Vol.6 (1), p.20784-20784, Article 20784
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4745101
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/61/2035
639/166/985
692/4025/1334
82/51
Aged
Animals
Biomaterials
Bladder
Contracture - prevention & control
Fibroblast growth factor 2
Humanities and Social Sciences
Humans
Lactic Acid - administration & dosage
Male
Microvasculature
Models, Animal
multidisciplinary
Nanoparticles
Nanoparticles - administration & dosage
Oligopeptides - administration & dosage
Polyglycolic Acid - administration & dosage
Polylactide-co-glycolide
Rabbits
Science
Smooth muscle
Surgery
Tissue engineering
Treatment Outcome
Urinary bladder
Urinary Bladder - drug effects
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - administration & dosage
title Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-delivery%20of%20VEGF%20and%20bFGF%20via%20a%20PLGA%20nanoparticle-modified%20BAM%20for%20effective%20contracture%20inhibition%20of%20regenerated%20bladder%20tissue%20in%20rabbits&rft.jtitle=Scientific%20reports&rft.au=Jiang,%20Xincheng&rft.date=2016-02-08&rft.volume=6&rft.issue=1&rft.spage=20784&rft.epage=20784&rft.pages=20784-20784&rft.artnum=20784&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep20784&rft_dat=%3Cproquest_pubme%3E1764138996%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899016145&rft_id=info:pmid/26854200&rfr_iscdi=true