Broadwick: a framework for computational epidemiology

Modelling disease outbreaks often involves integrating the wealth of data that are gathered during modern outbreaks into complex mathematical or computational models of transmission. Incorporating these data into simple compartmental epidemiological models is often challenging, requiring the use of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2016-02, Vol.17 (44), p.65-65, Article 65
Hauptverfasser: O'Hare, Anthony, Lycett, Samantha J, Doherty, Thomas, Salvador, Liliana C M, Kao, Rowland R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 44
container_start_page 65
container_title BMC bioinformatics
container_volume 17
creator O'Hare, Anthony
Lycett, Samantha J
Doherty, Thomas
Salvador, Liliana C M
Kao, Rowland R
description Modelling disease outbreaks often involves integrating the wealth of data that are gathered during modern outbreaks into complex mathematical or computational models of transmission. Incorporating these data into simple compartmental epidemiological models is often challenging, requiring the use of more complex but also more efficient computational models. In this paper we introduce a new framework that allows for a more systematic and user-friendly way of building and running epidemiological models that efficiently handles disease data and reduces much of the boilerplate code that usually associated to these models. We introduce the framework by developing an SIR model on a simple network as an example. We develop Broadwick, a modular, object-oriented epidemiological framework that efficiently handles large epidemiological datasets and provides packages for stochastic simulations, parameter inference using Approximate Bayesian Computation (ABC) and Markov Chain Monte Carlo (MCMC) methods. Each algorithm used is fully customisable with sensible defaults that are easily overridden by custom algorithms as required. Broadwick is an epidemiological modelling framework developed to increase the productivity of researchers by providing a common framework with which to develop and share complex models. It will appeal to research team leaders as it allows for models to be created prior to a disease outbreak and has the ability to handle large datasets commonly found in epidemiological modelling.
doi_str_mv 10.1186/s12859-016-0903-2
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4743398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A443251536</galeid><sourcerecordid>A443251536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-d14fd8d9526897d74d4d1371b532f4d24fbf9cc651ad344941c63353d2b16cb3</originalsourceid><addsrcrecordid>eNptkk1rFTEYhYMo9kN_gBsZcGMX0-bN54yLQi1WCwVBuw-ZfFzTzkyuyYy1_94Mty33SskiIXnOecnhIPQO8DFAI04ykIa3NQZR4xbTmrxA-8Ak1AQwf7l13kMHOd9gDLLB_DXaI6JhQjRiH_HPKWp7F8ztp0pXPunB3cV0W_mYKhOH9TzpKcRR95VbB-uGEPu4un-DXnndZ_f2YT9E1xdfrs-_1Vffv16en13VhpNmqi0wbxvb8jKvlVYyyyxQCR2nxDNLmO98a4zgoC1lrGVgBKWcWtKBMB09RKcb2_XcDc4aN05J92qdwqDTvYo6qN2XMfxSq_hHMckobZti8PHBIMXfs8uTGkI2ru_16OKcFUhBWt4SLAv64T_0Js6pfHyhJBVY4G1qpXunwuhjmWsWU3XGGCUcOBWFOn6GKmsJ0MTR-VDudwRHO4LCTO7vtNJzzury549dFjasSTHn5PxTHoDVUgu1qYUqtVBLLRQpmvfbQT4pHntA_wG9i7AA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773606007</pqid></control><display><type>article</type><title>Broadwick: a framework for computational epidemiology</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>O'Hare, Anthony ; Lycett, Samantha J ; Doherty, Thomas ; Salvador, Liliana C M ; Kao, Rowland R</creator><creatorcontrib>O'Hare, Anthony ; Lycett, Samantha J ; Doherty, Thomas ; Salvador, Liliana C M ; Kao, Rowland R</creatorcontrib><description>Modelling disease outbreaks often involves integrating the wealth of data that are gathered during modern outbreaks into complex mathematical or computational models of transmission. Incorporating these data into simple compartmental epidemiological models is often challenging, requiring the use of more complex but also more efficient computational models. In this paper we introduce a new framework that allows for a more systematic and user-friendly way of building and running epidemiological models that efficiently handles disease data and reduces much of the boilerplate code that usually associated to these models. We introduce the framework by developing an SIR model on a simple network as an example. We develop Broadwick, a modular, object-oriented epidemiological framework that efficiently handles large epidemiological datasets and provides packages for stochastic simulations, parameter inference using Approximate Bayesian Computation (ABC) and Markov Chain Monte Carlo (MCMC) methods. Each algorithm used is fully customisable with sensible defaults that are easily overridden by custom algorithms as required. Broadwick is an epidemiological modelling framework developed to increase the productivity of researchers by providing a common framework with which to develop and share complex models. It will appeal to research team leaders as it allows for models to be created prior to a disease outbreak and has the ability to handle large datasets commonly found in epidemiological modelling.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-016-0903-2</identifier><identifier>PMID: 26846686</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis ; Bayes Theorem ; Computer Simulation ; Epidemics ; Epidemiologic Studies ; Genetics, Population ; Humans ; Markov Chains ; Markov processes ; Models, Theoretical ; Monte Carlo Method ; Software ; United States</subject><ispartof>BMC bioinformatics, 2016-02, Vol.17 (44), p.65-65, Article 65</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>O’Hare et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-d14fd8d9526897d74d4d1371b532f4d24fbf9cc651ad344941c63353d2b16cb3</citedby><cites>FETCH-LOGICAL-c528t-d14fd8d9526897d74d4d1371b532f4d24fbf9cc651ad344941c63353d2b16cb3</cites><orcidid>0000-0003-2561-9582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743398/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743398/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26846686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Hare, Anthony</creatorcontrib><creatorcontrib>Lycett, Samantha J</creatorcontrib><creatorcontrib>Doherty, Thomas</creatorcontrib><creatorcontrib>Salvador, Liliana C M</creatorcontrib><creatorcontrib>Kao, Rowland R</creatorcontrib><title>Broadwick: a framework for computational epidemiology</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Modelling disease outbreaks often involves integrating the wealth of data that are gathered during modern outbreaks into complex mathematical or computational models of transmission. Incorporating these data into simple compartmental epidemiological models is often challenging, requiring the use of more complex but also more efficient computational models. In this paper we introduce a new framework that allows for a more systematic and user-friendly way of building and running epidemiological models that efficiently handles disease data and reduces much of the boilerplate code that usually associated to these models. We introduce the framework by developing an SIR model on a simple network as an example. We develop Broadwick, a modular, object-oriented epidemiological framework that efficiently handles large epidemiological datasets and provides packages for stochastic simulations, parameter inference using Approximate Bayesian Computation (ABC) and Markov Chain Monte Carlo (MCMC) methods. Each algorithm used is fully customisable with sensible defaults that are easily overridden by custom algorithms as required. Broadwick is an epidemiological modelling framework developed to increase the productivity of researchers by providing a common framework with which to develop and share complex models. It will appeal to research team leaders as it allows for models to be created prior to a disease outbreak and has the ability to handle large datasets commonly found in epidemiological modelling.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Bayes Theorem</subject><subject>Computer Simulation</subject><subject>Epidemics</subject><subject>Epidemiologic Studies</subject><subject>Genetics, Population</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Models, Theoretical</subject><subject>Monte Carlo Method</subject><subject>Software</subject><subject>United States</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkk1rFTEYhYMo9kN_gBsZcGMX0-bN54yLQi1WCwVBuw-ZfFzTzkyuyYy1_94Mty33SskiIXnOecnhIPQO8DFAI04ykIa3NQZR4xbTmrxA-8Ak1AQwf7l13kMHOd9gDLLB_DXaI6JhQjRiH_HPKWp7F8ztp0pXPunB3cV0W_mYKhOH9TzpKcRR95VbB-uGEPu4un-DXnndZ_f2YT9E1xdfrs-_1Vffv16en13VhpNmqi0wbxvb8jKvlVYyyyxQCR2nxDNLmO98a4zgoC1lrGVgBKWcWtKBMB09RKcb2_XcDc4aN05J92qdwqDTvYo6qN2XMfxSq_hHMckobZti8PHBIMXfs8uTGkI2ru_16OKcFUhBWt4SLAv64T_0Js6pfHyhJBVY4G1qpXunwuhjmWsWU3XGGCUcOBWFOn6GKmsJ0MTR-VDudwRHO4LCTO7vtNJzzury549dFjasSTHn5PxTHoDVUgu1qYUqtVBLLRQpmvfbQT4pHntA_wG9i7AA</recordid><startdate>20160204</startdate><enddate>20160204</enddate><creator>O'Hare, Anthony</creator><creator>Lycett, Samantha J</creator><creator>Doherty, Thomas</creator><creator>Salvador, Liliana C M</creator><creator>Kao, Rowland R</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2561-9582</orcidid></search><sort><creationdate>20160204</creationdate><title>Broadwick: a framework for computational epidemiology</title><author>O'Hare, Anthony ; Lycett, Samantha J ; Doherty, Thomas ; Salvador, Liliana C M ; Kao, Rowland R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-d14fd8d9526897d74d4d1371b532f4d24fbf9cc651ad344941c63353d2b16cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Bayes Theorem</topic><topic>Computer Simulation</topic><topic>Epidemics</topic><topic>Epidemiologic Studies</topic><topic>Genetics, Population</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Models, Theoretical</topic><topic>Monte Carlo Method</topic><topic>Software</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Hare, Anthony</creatorcontrib><creatorcontrib>Lycett, Samantha J</creatorcontrib><creatorcontrib>Doherty, Thomas</creatorcontrib><creatorcontrib>Salvador, Liliana C M</creatorcontrib><creatorcontrib>Kao, Rowland R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Hare, Anthony</au><au>Lycett, Samantha J</au><au>Doherty, Thomas</au><au>Salvador, Liliana C M</au><au>Kao, Rowland R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadwick: a framework for computational epidemiology</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2016-02-04</date><risdate>2016</risdate><volume>17</volume><issue>44</issue><spage>65</spage><epage>65</epage><pages>65-65</pages><artnum>65</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Modelling disease outbreaks often involves integrating the wealth of data that are gathered during modern outbreaks into complex mathematical or computational models of transmission. Incorporating these data into simple compartmental epidemiological models is often challenging, requiring the use of more complex but also more efficient computational models. In this paper we introduce a new framework that allows for a more systematic and user-friendly way of building and running epidemiological models that efficiently handles disease data and reduces much of the boilerplate code that usually associated to these models. We introduce the framework by developing an SIR model on a simple network as an example. We develop Broadwick, a modular, object-oriented epidemiological framework that efficiently handles large epidemiological datasets and provides packages for stochastic simulations, parameter inference using Approximate Bayesian Computation (ABC) and Markov Chain Monte Carlo (MCMC) methods. Each algorithm used is fully customisable with sensible defaults that are easily overridden by custom algorithms as required. Broadwick is an epidemiological modelling framework developed to increase the productivity of researchers by providing a common framework with which to develop and share complex models. It will appeal to research team leaders as it allows for models to be created prior to a disease outbreak and has the ability to handle large datasets commonly found in epidemiological modelling.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>26846686</pmid><doi>10.1186/s12859-016-0903-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2561-9582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2016-02, Vol.17 (44), p.65-65, Article 65
issn 1471-2105
1471-2105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4743398
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Algorithms
Analysis
Bayes Theorem
Computer Simulation
Epidemics
Epidemiologic Studies
Genetics, Population
Humans
Markov Chains
Markov processes
Models, Theoretical
Monte Carlo Method
Software
United States
title Broadwick: a framework for computational epidemiology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadwick:%20a%20framework%20for%20computational%20epidemiology&rft.jtitle=BMC%20bioinformatics&rft.au=O'Hare,%20Anthony&rft.date=2016-02-04&rft.volume=17&rft.issue=44&rft.spage=65&rft.epage=65&rft.pages=65-65&rft.artnum=65&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-016-0903-2&rft_dat=%3Cgale_pubme%3EA443251536%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773606007&rft_id=info:pmid/26846686&rft_galeid=A443251536&rfr_iscdi=true