sciReptor: analysis of single-cell level immunoglobulin repertoires
The sequencing of immunoglobulin (Ig) transcripts from single B cells yields essential information about Ig heavy:light chain pairing, which is lost in conventional bulk sequencing experiments. The previously limited throughput of single-cell approaches has recently been overcome by the introduction...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2016-02, Vol.17 (44), p.67-67, Article 67 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 44 |
container_start_page | 67 |
container_title | BMC bioinformatics |
container_volume | 17 |
creator | Imkeller, Katharina Arndt, Peter F Wardemann, Hedda Busse, Christian E |
description | The sequencing of immunoglobulin (Ig) transcripts from single B cells yields essential information about Ig heavy:light chain pairing, which is lost in conventional bulk sequencing experiments. The previously limited throughput of single-cell approaches has recently been overcome by the introduction of multiple next-generation sequencing (NGS)-based platforms. Furthermore, single-cell techniques allow the assignment of additional data types (e.g. cell surface marker expression), which are crucial for biological interpretation. However, the currently available computational tools are not designed to handle single-cell data and do not provide integral solutions for linking of sequence data to other biological data.
Here we introduce sciReptor, a flexible toolkit for the processing and analysis of antigen receptor repertoire sequencing data at single-cell level. The software combines bioinformatics tools for immunoglobulin sequence annotation with a relational database, where raw data and analysis results are stored and linked. sciReptor supports attribution of additional data categories such as cell surface marker expression or immunological metadata. Furthermore, it comprises a quality control module as well as basic repertoire visualization tools.
sciReptor is a flexible framework for standardized sequence analysis of antigen receptor repertoires on single-cell level. The relational database allows easy data sharing and downstream analyses as well as immediate comparisons between different data sets. |
doi_str_mv | 10.1186/s12859-016-0920-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4743164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A443251535</galeid><sourcerecordid>A443251535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-d4273c959fb2b88da9c6ed978bde8f9a42011121d08ddf8830b14b97a948fbaa3</originalsourceid><addsrcrecordid>eNptktFr1TAUxoM43Jz-Ab5IwRd96MxJ0zbxYTAu6gaDwdTnkCanNSNtrkk73H9vyp1zV0YeEnJ-33eSw0fIG6AnAKL5mICJWpYUmpJKRkt4Ro6At1AyoPXzR-dD8jKlG0qhFbR-QQ5ZI3KJyiOyScZd43YO8VOhJ-3vkktF6IvkpsFjadD7wuMt-sKN4zKFwYdu8W4qIm4xzsFFTK_IQa99wtf3-zH58eXz9815eXn19WJzdlmamom5tJy1lZG17DvWCWG1NA1a2YrOouil5owCAANLhbW9EBXtgHey1ZKLvtO6OianO9_t0o1oDU5z1F5toxt1vFNBO7VfmdxPNYRbxVteQcOzwft7gxh-LZhmNbq0flFPGJakoG1Yfh9ImtF3_6E3YYl5QCvVVg1tWMX-UYP2qNzUh9zXrKbqjPOK1VBXdaZOnqDysjg6EybsXb7fE3zYE2Rmxt_zoJeU1MW3630WdqyJIaWI_cM8gKo1JWqXEpVTotaUKMiat48H-aD4G4vqD51ftnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773606232</pqid></control><display><type>article</type><title>sciReptor: analysis of single-cell level immunoglobulin repertoires</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Imkeller, Katharina ; Arndt, Peter F ; Wardemann, Hedda ; Busse, Christian E</creator><creatorcontrib>Imkeller, Katharina ; Arndt, Peter F ; Wardemann, Hedda ; Busse, Christian E</creatorcontrib><description>The sequencing of immunoglobulin (Ig) transcripts from single B cells yields essential information about Ig heavy:light chain pairing, which is lost in conventional bulk sequencing experiments. The previously limited throughput of single-cell approaches has recently been overcome by the introduction of multiple next-generation sequencing (NGS)-based platforms. Furthermore, single-cell techniques allow the assignment of additional data types (e.g. cell surface marker expression), which are crucial for biological interpretation. However, the currently available computational tools are not designed to handle single-cell data and do not provide integral solutions for linking of sequence data to other biological data.
Here we introduce sciReptor, a flexible toolkit for the processing and analysis of antigen receptor repertoire sequencing data at single-cell level. The software combines bioinformatics tools for immunoglobulin sequence annotation with a relational database, where raw data and analysis results are stored and linked. sciReptor supports attribution of additional data categories such as cell surface marker expression or immunological metadata. Furthermore, it comprises a quality control module as well as basic repertoire visualization tools.
sciReptor is a flexible framework for standardized sequence analysis of antigen receptor repertoires on single-cell level. The relational database allows easy data sharing and downstream analyses as well as immediate comparisons between different data sets.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-016-0920-1</identifier><identifier>PMID: 26847109</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Annotations ; Antigens ; B cells ; Computational Biology - methods ; Design ; Flow cytometry ; Genes, Immunoglobulin ; Genetic aspects ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Immunoglobulins ; Immunoglobulins - genetics ; Immunology ; Light ; Metadata ; Molecular Sequence Annotation ; Polymerase chain reaction ; Quality control ; Receptors, Immunologic - genetics ; Relational data bases ; Single-Cell Analysis - methods ; Software ; T cell receptors</subject><ispartof>BMC bioinformatics, 2016-02, Vol.17 (44), p.67-67, Article 67</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>Imkeller et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-d4273c959fb2b88da9c6ed978bde8f9a42011121d08ddf8830b14b97a948fbaa3</citedby><cites>FETCH-LOGICAL-c528t-d4273c959fb2b88da9c6ed978bde8f9a42011121d08ddf8830b14b97a948fbaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743164/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743164/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26847109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Imkeller, Katharina</creatorcontrib><creatorcontrib>Arndt, Peter F</creatorcontrib><creatorcontrib>Wardemann, Hedda</creatorcontrib><creatorcontrib>Busse, Christian E</creatorcontrib><title>sciReptor: analysis of single-cell level immunoglobulin repertoires</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>The sequencing of immunoglobulin (Ig) transcripts from single B cells yields essential information about Ig heavy:light chain pairing, which is lost in conventional bulk sequencing experiments. The previously limited throughput of single-cell approaches has recently been overcome by the introduction of multiple next-generation sequencing (NGS)-based platforms. Furthermore, single-cell techniques allow the assignment of additional data types (e.g. cell surface marker expression), which are crucial for biological interpretation. However, the currently available computational tools are not designed to handle single-cell data and do not provide integral solutions for linking of sequence data to other biological data.
Here we introduce sciReptor, a flexible toolkit for the processing and analysis of antigen receptor repertoire sequencing data at single-cell level. The software combines bioinformatics tools for immunoglobulin sequence annotation with a relational database, where raw data and analysis results are stored and linked. sciReptor supports attribution of additional data categories such as cell surface marker expression or immunological metadata. Furthermore, it comprises a quality control module as well as basic repertoire visualization tools.
sciReptor is a flexible framework for standardized sequence analysis of antigen receptor repertoires on single-cell level. The relational database allows easy data sharing and downstream analyses as well as immediate comparisons between different data sets.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Antigens</subject><subject>B cells</subject><subject>Computational Biology - methods</subject><subject>Design</subject><subject>Flow cytometry</subject><subject>Genes, Immunoglobulin</subject><subject>Genetic aspects</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Immunoglobulins - genetics</subject><subject>Immunology</subject><subject>Light</subject><subject>Metadata</subject><subject>Molecular Sequence Annotation</subject><subject>Polymerase chain reaction</subject><subject>Quality control</subject><subject>Receptors, Immunologic - genetics</subject><subject>Relational data bases</subject><subject>Single-Cell Analysis - methods</subject><subject>Software</subject><subject>T cell receptors</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptktFr1TAUxoM43Jz-Ab5IwRd96MxJ0zbxYTAu6gaDwdTnkCanNSNtrkk73H9vyp1zV0YeEnJ-33eSw0fIG6AnAKL5mICJWpYUmpJKRkt4Ro6At1AyoPXzR-dD8jKlG0qhFbR-QQ5ZI3KJyiOyScZd43YO8VOhJ-3vkktF6IvkpsFjadD7wuMt-sKN4zKFwYdu8W4qIm4xzsFFTK_IQa99wtf3-zH58eXz9815eXn19WJzdlmamom5tJy1lZG17DvWCWG1NA1a2YrOouil5owCAANLhbW9EBXtgHey1ZKLvtO6OianO9_t0o1oDU5z1F5toxt1vFNBO7VfmdxPNYRbxVteQcOzwft7gxh-LZhmNbq0flFPGJakoG1Yfh9ImtF3_6E3YYl5QCvVVg1tWMX-UYP2qNzUh9zXrKbqjPOK1VBXdaZOnqDysjg6EybsXb7fE3zYE2Rmxt_zoJeU1MW3630WdqyJIaWI_cM8gKo1JWqXEpVTotaUKMiat48H-aD4G4vqD51ftnw</recordid><startdate>20160204</startdate><enddate>20160204</enddate><creator>Imkeller, Katharina</creator><creator>Arndt, Peter F</creator><creator>Wardemann, Hedda</creator><creator>Busse, Christian E</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160204</creationdate><title>sciReptor: analysis of single-cell level immunoglobulin repertoires</title><author>Imkeller, Katharina ; Arndt, Peter F ; Wardemann, Hedda ; Busse, Christian E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-d4273c959fb2b88da9c6ed978bde8f9a42011121d08ddf8830b14b97a948fbaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Antigens</topic><topic>B cells</topic><topic>Computational Biology - methods</topic><topic>Design</topic><topic>Flow cytometry</topic><topic>Genes, Immunoglobulin</topic><topic>Genetic aspects</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Immunoglobulins - genetics</topic><topic>Immunology</topic><topic>Light</topic><topic>Metadata</topic><topic>Molecular Sequence Annotation</topic><topic>Polymerase chain reaction</topic><topic>Quality control</topic><topic>Receptors, Immunologic - genetics</topic><topic>Relational data bases</topic><topic>Single-Cell Analysis - methods</topic><topic>Software</topic><topic>T cell receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imkeller, Katharina</creatorcontrib><creatorcontrib>Arndt, Peter F</creatorcontrib><creatorcontrib>Wardemann, Hedda</creatorcontrib><creatorcontrib>Busse, Christian E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imkeller, Katharina</au><au>Arndt, Peter F</au><au>Wardemann, Hedda</au><au>Busse, Christian E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>sciReptor: analysis of single-cell level immunoglobulin repertoires</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2016-02-04</date><risdate>2016</risdate><volume>17</volume><issue>44</issue><spage>67</spage><epage>67</epage><pages>67-67</pages><artnum>67</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>The sequencing of immunoglobulin (Ig) transcripts from single B cells yields essential information about Ig heavy:light chain pairing, which is lost in conventional bulk sequencing experiments. The previously limited throughput of single-cell approaches has recently been overcome by the introduction of multiple next-generation sequencing (NGS)-based platforms. Furthermore, single-cell techniques allow the assignment of additional data types (e.g. cell surface marker expression), which are crucial for biological interpretation. However, the currently available computational tools are not designed to handle single-cell data and do not provide integral solutions for linking of sequence data to other biological data.
Here we introduce sciReptor, a flexible toolkit for the processing and analysis of antigen receptor repertoire sequencing data at single-cell level. The software combines bioinformatics tools for immunoglobulin sequence annotation with a relational database, where raw data and analysis results are stored and linked. sciReptor supports attribution of additional data categories such as cell surface marker expression or immunological metadata. Furthermore, it comprises a quality control module as well as basic repertoire visualization tools.
sciReptor is a flexible framework for standardized sequence analysis of antigen receptor repertoires on single-cell level. The relational database allows easy data sharing and downstream analyses as well as immediate comparisons between different data sets.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>26847109</pmid><doi>10.1186/s12859-016-0920-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2016-02, Vol.17 (44), p.67-67, Article 67 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4743164 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Annotations Antigens B cells Computational Biology - methods Design Flow cytometry Genes, Immunoglobulin Genetic aspects High-Throughput Nucleotide Sequencing - methods Humans Immunoglobulins Immunoglobulins - genetics Immunology Light Metadata Molecular Sequence Annotation Polymerase chain reaction Quality control Receptors, Immunologic - genetics Relational data bases Single-Cell Analysis - methods Software T cell receptors |
title | sciReptor: analysis of single-cell level immunoglobulin repertoires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=sciReptor:%20analysis%20of%20single-cell%20level%20immunoglobulin%20repertoires&rft.jtitle=BMC%20bioinformatics&rft.au=Imkeller,%20Katharina&rft.date=2016-02-04&rft.volume=17&rft.issue=44&rft.spage=67&rft.epage=67&rft.pages=67-67&rft.artnum=67&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-016-0920-1&rft_dat=%3Cgale_pubme%3EA443251535%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773606232&rft_id=info:pmid/26847109&rft_galeid=A443251535&rfr_iscdi=true |