Introduction to the Analysis of Survival Data in the Presence of Competing Risks
Competing risks occur frequently in the analysis of survival data. A competing risk is an event whose occurrence precludes the occurrence of the primary event of interest. In a study examining time to death attributable to cardiovascular causes, death attributable to noncardiovascular causes is a co...
Gespeichert in:
Veröffentlicht in: | Circulation (New York, N.Y.) N.Y.), 2016-02, Vol.133 (6), p.601-609 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 609 |
---|---|
container_issue | 6 |
container_start_page | 601 |
container_title | Circulation (New York, N.Y.) |
container_volume | 133 |
creator | Austin, Peter C Lee, Douglas S Fine, Jason P |
description | Competing risks occur frequently in the analysis of survival data. A competing risk is an event whose occurrence precludes the occurrence of the primary event of interest. In a study examining time to death attributable to cardiovascular causes, death attributable to noncardiovascular causes is a competing risk. When estimating the crude incidence of outcomes, analysts should use the cumulative incidence function, rather than the complement of the Kaplan-Meier survival function. The use of the Kaplan-Meier survival function results in estimates of incidence that are biased upward, regardless of whether the competing events are independent of one another. When fitting regression models in the presence of competing risks, researchers can choose from 2 different families of modelsmodeling the effect of covariates on the cause-specific hazard of the outcome or modeling the effect of covariates on the cumulative incidence function. The former allows one to estimate the effect of the covariates on the rate of occurrence of the outcome in those subjects who are currently event free. The latter allows one to estimate the effect of covariates on the absolute risk of the outcome over time. The former family of models may be better suited for addressing etiologic questions, whereas the latter model may be better suited for estimating a patient’s clinical prognosis. We illustrate the application of these methods by examining cause-specific mortality in patients hospitalized with heart failure. Statistical software code in both R and SAS is provided. |
doi_str_mv | 10.1161/CIRCULATIONAHA.115.017719 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4741409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1764337913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5900-5c635b8cbc1fb7729d6a6d0869744be5be6678963bba74ace89451001c0d0e863</originalsourceid><addsrcrecordid>eNpVkc1u1DAUhS0EokPhFVDYsUm5jv_iDVIUfjrSiFalXVuOc6djmokHO5mqb4_LtFW7snz83WNbHyGfKJxQKumXdnnRXq2ay-XZr-a0yZk4AaoU1a_IgoqKl1ww_ZosAECXilXVEXmX0p-8lUyJt-SokrWoKw0Lcr4cpxj62U0-jMUUimmDRTPa4S75VIR18XuOe7-3Q_HNTrbw43_gPGLC0eE90IbtDic_XhcXPt2k9-TN2g4JPzysx-Tqx_fL9rRcnf1cts2qdEIDlMJJJrradY6uO6Uq3Usre6ilVpx3KDqUUtVasq6ziluHteaCAlAHPWAt2TH5eujdzd0We4f5H3Ywu-i3Nt6ZYL15eTL6jbkOe8MVpxx0Lvj8UBDD3xnTZLY-ORwGO2KYk6FKcsaUpiyj-oC6GFKKuH66hoK5N2JeGsmZMAcjefbj83c-TT4qyAA_ALdhmDCmm2G-xWg2aIdpY7IzYLmqrIBKqEBDmRMK7B9knpku</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764337913</pqid></control><display><type>article</type><title>Introduction to the Analysis of Survival Data in the Presence of Competing Risks</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>American Heart Association</source><source>Journals@Ovid Complete</source><creator>Austin, Peter C ; Lee, Douglas S ; Fine, Jason P</creator><creatorcontrib>Austin, Peter C ; Lee, Douglas S ; Fine, Jason P</creatorcontrib><description>Competing risks occur frequently in the analysis of survival data. A competing risk is an event whose occurrence precludes the occurrence of the primary event of interest. In a study examining time to death attributable to cardiovascular causes, death attributable to noncardiovascular causes is a competing risk. When estimating the crude incidence of outcomes, analysts should use the cumulative incidence function, rather than the complement of the Kaplan-Meier survival function. The use of the Kaplan-Meier survival function results in estimates of incidence that are biased upward, regardless of whether the competing events are independent of one another. When fitting regression models in the presence of competing risks, researchers can choose from 2 different families of modelsmodeling the effect of covariates on the cause-specific hazard of the outcome or modeling the effect of covariates on the cumulative incidence function. The former allows one to estimate the effect of the covariates on the rate of occurrence of the outcome in those subjects who are currently event free. The latter allows one to estimate the effect of covariates on the absolute risk of the outcome over time. The former family of models may be better suited for addressing etiologic questions, whereas the latter model may be better suited for estimating a patient’s clinical prognosis. We illustrate the application of these methods by examining cause-specific mortality in patients hospitalized with heart failure. Statistical software code in both R and SAS is provided.</description><identifier>ISSN: 0009-7322</identifier><identifier>EISSN: 1524-4539</identifier><identifier>DOI: 10.1161/CIRCULATIONAHA.115.017719</identifier><identifier>PMID: 26858290</identifier><language>eng</language><publisher>United States: by the American College of Cardiology Foundation and the American Heart Association, Inc</publisher><subject>Aged ; Aged, 80 and over ; Cardiovascular Diseases - diagnosis ; Cardiovascular Diseases - mortality ; Databases, Factual - statistics & numerical data ; Databases, Factual - trends ; Female ; Humans ; Kaplan-Meier Estimate ; Male ; Models, Statistical ; Risk Factors ; Statistical Primer for Cardiovascular Research ; Statistics as Topic - methods ; Survival Analysis</subject><ispartof>Circulation (New York, N.Y.), 2016-02, Vol.133 (6), p.601-609</ispartof><rights>2016 by the American College of Cardiology Foundation and the American Heart Association, Inc.</rights><rights>2016 The Authors.</rights><rights>2016 The Authors. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5900-5c635b8cbc1fb7729d6a6d0869744be5be6678963bba74ace89451001c0d0e863</citedby><cites>FETCH-LOGICAL-c5900-5c635b8cbc1fb7729d6a6d0869744be5be6678963bba74ace89451001c0d0e863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3674,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26858290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Austin, Peter C</creatorcontrib><creatorcontrib>Lee, Douglas S</creatorcontrib><creatorcontrib>Fine, Jason P</creatorcontrib><title>Introduction to the Analysis of Survival Data in the Presence of Competing Risks</title><title>Circulation (New York, N.Y.)</title><addtitle>Circulation</addtitle><description>Competing risks occur frequently in the analysis of survival data. A competing risk is an event whose occurrence precludes the occurrence of the primary event of interest. In a study examining time to death attributable to cardiovascular causes, death attributable to noncardiovascular causes is a competing risk. When estimating the crude incidence of outcomes, analysts should use the cumulative incidence function, rather than the complement of the Kaplan-Meier survival function. The use of the Kaplan-Meier survival function results in estimates of incidence that are biased upward, regardless of whether the competing events are independent of one another. When fitting regression models in the presence of competing risks, researchers can choose from 2 different families of modelsmodeling the effect of covariates on the cause-specific hazard of the outcome or modeling the effect of covariates on the cumulative incidence function. The former allows one to estimate the effect of the covariates on the rate of occurrence of the outcome in those subjects who are currently event free. The latter allows one to estimate the effect of covariates on the absolute risk of the outcome over time. The former family of models may be better suited for addressing etiologic questions, whereas the latter model may be better suited for estimating a patient’s clinical prognosis. We illustrate the application of these methods by examining cause-specific mortality in patients hospitalized with heart failure. Statistical software code in both R and SAS is provided.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Cardiovascular Diseases - diagnosis</subject><subject>Cardiovascular Diseases - mortality</subject><subject>Databases, Factual - statistics & numerical data</subject><subject>Databases, Factual - trends</subject><subject>Female</subject><subject>Humans</subject><subject>Kaplan-Meier Estimate</subject><subject>Male</subject><subject>Models, Statistical</subject><subject>Risk Factors</subject><subject>Statistical Primer for Cardiovascular Research</subject><subject>Statistics as Topic - methods</subject><subject>Survival Analysis</subject><issn>0009-7322</issn><issn>1524-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1u1DAUhS0EokPhFVDYsUm5jv_iDVIUfjrSiFalXVuOc6djmokHO5mqb4_LtFW7snz83WNbHyGfKJxQKumXdnnRXq2ay-XZr-a0yZk4AaoU1a_IgoqKl1ww_ZosAECXilXVEXmX0p-8lUyJt-SokrWoKw0Lcr4cpxj62U0-jMUUimmDRTPa4S75VIR18XuOe7-3Q_HNTrbw43_gPGLC0eE90IbtDic_XhcXPt2k9-TN2g4JPzysx-Tqx_fL9rRcnf1cts2qdEIDlMJJJrradY6uO6Uq3Usre6ilVpx3KDqUUtVasq6ziluHteaCAlAHPWAt2TH5eujdzd0We4f5H3Ywu-i3Nt6ZYL15eTL6jbkOe8MVpxx0Lvj8UBDD3xnTZLY-ORwGO2KYk6FKcsaUpiyj-oC6GFKKuH66hoK5N2JeGsmZMAcjefbj83c-TT4qyAA_ALdhmDCmm2G-xWg2aIdpY7IzYLmqrIBKqEBDmRMK7B9knpku</recordid><startdate>20160209</startdate><enddate>20160209</enddate><creator>Austin, Peter C</creator><creator>Lee, Douglas S</creator><creator>Fine, Jason P</creator><general>by the American College of Cardiology Foundation and the American Heart Association, Inc</general><general>Lippincott Williams & Wilkins</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160209</creationdate><title>Introduction to the Analysis of Survival Data in the Presence of Competing Risks</title><author>Austin, Peter C ; Lee, Douglas S ; Fine, Jason P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5900-5c635b8cbc1fb7729d6a6d0869744be5be6678963bba74ace89451001c0d0e863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Cardiovascular Diseases - diagnosis</topic><topic>Cardiovascular Diseases - mortality</topic><topic>Databases, Factual - statistics & numerical data</topic><topic>Databases, Factual - trends</topic><topic>Female</topic><topic>Humans</topic><topic>Kaplan-Meier Estimate</topic><topic>Male</topic><topic>Models, Statistical</topic><topic>Risk Factors</topic><topic>Statistical Primer for Cardiovascular Research</topic><topic>Statistics as Topic - methods</topic><topic>Survival Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Austin, Peter C</creatorcontrib><creatorcontrib>Lee, Douglas S</creatorcontrib><creatorcontrib>Fine, Jason P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Circulation (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Austin, Peter C</au><au>Lee, Douglas S</au><au>Fine, Jason P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction to the Analysis of Survival Data in the Presence of Competing Risks</atitle><jtitle>Circulation (New York, N.Y.)</jtitle><addtitle>Circulation</addtitle><date>2016-02-09</date><risdate>2016</risdate><volume>133</volume><issue>6</issue><spage>601</spage><epage>609</epage><pages>601-609</pages><issn>0009-7322</issn><eissn>1524-4539</eissn><abstract>Competing risks occur frequently in the analysis of survival data. A competing risk is an event whose occurrence precludes the occurrence of the primary event of interest. In a study examining time to death attributable to cardiovascular causes, death attributable to noncardiovascular causes is a competing risk. When estimating the crude incidence of outcomes, analysts should use the cumulative incidence function, rather than the complement of the Kaplan-Meier survival function. The use of the Kaplan-Meier survival function results in estimates of incidence that are biased upward, regardless of whether the competing events are independent of one another. When fitting regression models in the presence of competing risks, researchers can choose from 2 different families of modelsmodeling the effect of covariates on the cause-specific hazard of the outcome or modeling the effect of covariates on the cumulative incidence function. The former allows one to estimate the effect of the covariates on the rate of occurrence of the outcome in those subjects who are currently event free. The latter allows one to estimate the effect of covariates on the absolute risk of the outcome over time. The former family of models may be better suited for addressing etiologic questions, whereas the latter model may be better suited for estimating a patient’s clinical prognosis. We illustrate the application of these methods by examining cause-specific mortality in patients hospitalized with heart failure. Statistical software code in both R and SAS is provided.</abstract><cop>United States</cop><pub>by the American College of Cardiology Foundation and the American Heart Association, Inc</pub><pmid>26858290</pmid><doi>10.1161/CIRCULATIONAHA.115.017719</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7322 |
ispartof | Circulation (New York, N.Y.), 2016-02, Vol.133 (6), p.601-609 |
issn | 0009-7322 1524-4539 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4741409 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; American Heart Association; Journals@Ovid Complete |
subjects | Aged Aged, 80 and over Cardiovascular Diseases - diagnosis Cardiovascular Diseases - mortality Databases, Factual - statistics & numerical data Databases, Factual - trends Female Humans Kaplan-Meier Estimate Male Models, Statistical Risk Factors Statistical Primer for Cardiovascular Research Statistics as Topic - methods Survival Analysis |
title | Introduction to the Analysis of Survival Data in the Presence of Competing Risks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20to%20the%20Analysis%20of%20Survival%20Data%20in%20the%20Presence%20of%20Competing%20Risks&rft.jtitle=Circulation%20(New%20York,%20N.Y.)&rft.au=Austin,%20Peter%20C&rft.date=2016-02-09&rft.volume=133&rft.issue=6&rft.spage=601&rft.epage=609&rft.pages=601-609&rft.issn=0009-7322&rft.eissn=1524-4539&rft_id=info:doi/10.1161/CIRCULATIONAHA.115.017719&rft_dat=%3Cproquest_pubme%3E1764337913%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764337913&rft_id=info:pmid/26858290&rfr_iscdi=true |