Introduction to the Analysis of Survival Data in the Presence of Competing Risks

Competing risks occur frequently in the analysis of survival data. A competing risk is an event whose occurrence precludes the occurrence of the primary event of interest. In a study examining time to death attributable to cardiovascular causes, death attributable to noncardiovascular causes is a co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 2016-02, Vol.133 (6), p.601-609
Hauptverfasser: Austin, Peter C, Lee, Douglas S, Fine, Jason P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 609
container_issue 6
container_start_page 601
container_title Circulation (New York, N.Y.)
container_volume 133
creator Austin, Peter C
Lee, Douglas S
Fine, Jason P
description Competing risks occur frequently in the analysis of survival data. A competing risk is an event whose occurrence precludes the occurrence of the primary event of interest. In a study examining time to death attributable to cardiovascular causes, death attributable to noncardiovascular causes is a competing risk. When estimating the crude incidence of outcomes, analysts should use the cumulative incidence function, rather than the complement of the Kaplan-Meier survival function. The use of the Kaplan-Meier survival function results in estimates of incidence that are biased upward, regardless of whether the competing events are independent of one another. When fitting regression models in the presence of competing risks, researchers can choose from 2 different families of modelsmodeling the effect of covariates on the cause-specific hazard of the outcome or modeling the effect of covariates on the cumulative incidence function. The former allows one to estimate the effect of the covariates on the rate of occurrence of the outcome in those subjects who are currently event free. The latter allows one to estimate the effect of covariates on the absolute risk of the outcome over time. The former family of models may be better suited for addressing etiologic questions, whereas the latter model may be better suited for estimating a patient’s clinical prognosis. We illustrate the application of these methods by examining cause-specific mortality in patients hospitalized with heart failure. Statistical software code in both R and SAS is provided.
doi_str_mv 10.1161/CIRCULATIONAHA.115.017719
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4741409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1764337913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5900-5c635b8cbc1fb7729d6a6d0869744be5be6678963bba74ace89451001c0d0e863</originalsourceid><addsrcrecordid>eNpVkc1u1DAUhS0EokPhFVDYsUm5jv_iDVIUfjrSiFalXVuOc6djmokHO5mqb4_LtFW7snz83WNbHyGfKJxQKumXdnnRXq2ay-XZr-a0yZk4AaoU1a_IgoqKl1ww_ZosAECXilXVEXmX0p-8lUyJt-SokrWoKw0Lcr4cpxj62U0-jMUUimmDRTPa4S75VIR18XuOe7-3Q_HNTrbw43_gPGLC0eE90IbtDic_XhcXPt2k9-TN2g4JPzysx-Tqx_fL9rRcnf1cts2qdEIDlMJJJrradY6uO6Uq3Usre6ilVpx3KDqUUtVasq6ziluHteaCAlAHPWAt2TH5eujdzd0We4f5H3Ywu-i3Nt6ZYL15eTL6jbkOe8MVpxx0Lvj8UBDD3xnTZLY-ORwGO2KYk6FKcsaUpiyj-oC6GFKKuH66hoK5N2JeGsmZMAcjefbj83c-TT4qyAA_ALdhmDCmm2G-xWg2aIdpY7IzYLmqrIBKqEBDmRMK7B9knpku</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764337913</pqid></control><display><type>article</type><title>Introduction to the Analysis of Survival Data in the Presence of Competing Risks</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>American Heart Association</source><source>Journals@Ovid Complete</source><creator>Austin, Peter C ; Lee, Douglas S ; Fine, Jason P</creator><creatorcontrib>Austin, Peter C ; Lee, Douglas S ; Fine, Jason P</creatorcontrib><description>Competing risks occur frequently in the analysis of survival data. A competing risk is an event whose occurrence precludes the occurrence of the primary event of interest. In a study examining time to death attributable to cardiovascular causes, death attributable to noncardiovascular causes is a competing risk. When estimating the crude incidence of outcomes, analysts should use the cumulative incidence function, rather than the complement of the Kaplan-Meier survival function. The use of the Kaplan-Meier survival function results in estimates of incidence that are biased upward, regardless of whether the competing events are independent of one another. When fitting regression models in the presence of competing risks, researchers can choose from 2 different families of modelsmodeling the effect of covariates on the cause-specific hazard of the outcome or modeling the effect of covariates on the cumulative incidence function. The former allows one to estimate the effect of the covariates on the rate of occurrence of the outcome in those subjects who are currently event free. The latter allows one to estimate the effect of covariates on the absolute risk of the outcome over time. The former family of models may be better suited for addressing etiologic questions, whereas the latter model may be better suited for estimating a patient’s clinical prognosis. We illustrate the application of these methods by examining cause-specific mortality in patients hospitalized with heart failure. Statistical software code in both R and SAS is provided.</description><identifier>ISSN: 0009-7322</identifier><identifier>EISSN: 1524-4539</identifier><identifier>DOI: 10.1161/CIRCULATIONAHA.115.017719</identifier><identifier>PMID: 26858290</identifier><language>eng</language><publisher>United States: by the American College of Cardiology Foundation and the American Heart Association, Inc</publisher><subject>Aged ; Aged, 80 and over ; Cardiovascular Diseases - diagnosis ; Cardiovascular Diseases - mortality ; Databases, Factual - statistics &amp; numerical data ; Databases, Factual - trends ; Female ; Humans ; Kaplan-Meier Estimate ; Male ; Models, Statistical ; Risk Factors ; Statistical Primer for Cardiovascular Research ; Statistics as Topic - methods ; Survival Analysis</subject><ispartof>Circulation (New York, N.Y.), 2016-02, Vol.133 (6), p.601-609</ispartof><rights>2016 by the American College of Cardiology Foundation and the American Heart Association, Inc.</rights><rights>2016 The Authors.</rights><rights>2016 The Authors. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5900-5c635b8cbc1fb7729d6a6d0869744be5be6678963bba74ace89451001c0d0e863</citedby><cites>FETCH-LOGICAL-c5900-5c635b8cbc1fb7729d6a6d0869744be5be6678963bba74ace89451001c0d0e863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3674,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26858290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Austin, Peter C</creatorcontrib><creatorcontrib>Lee, Douglas S</creatorcontrib><creatorcontrib>Fine, Jason P</creatorcontrib><title>Introduction to the Analysis of Survival Data in the Presence of Competing Risks</title><title>Circulation (New York, N.Y.)</title><addtitle>Circulation</addtitle><description>Competing risks occur frequently in the analysis of survival data. A competing risk is an event whose occurrence precludes the occurrence of the primary event of interest. In a study examining time to death attributable to cardiovascular causes, death attributable to noncardiovascular causes is a competing risk. When estimating the crude incidence of outcomes, analysts should use the cumulative incidence function, rather than the complement of the Kaplan-Meier survival function. The use of the Kaplan-Meier survival function results in estimates of incidence that are biased upward, regardless of whether the competing events are independent of one another. When fitting regression models in the presence of competing risks, researchers can choose from 2 different families of modelsmodeling the effect of covariates on the cause-specific hazard of the outcome or modeling the effect of covariates on the cumulative incidence function. The former allows one to estimate the effect of the covariates on the rate of occurrence of the outcome in those subjects who are currently event free. The latter allows one to estimate the effect of covariates on the absolute risk of the outcome over time. The former family of models may be better suited for addressing etiologic questions, whereas the latter model may be better suited for estimating a patient’s clinical prognosis. We illustrate the application of these methods by examining cause-specific mortality in patients hospitalized with heart failure. Statistical software code in both R and SAS is provided.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Cardiovascular Diseases - diagnosis</subject><subject>Cardiovascular Diseases - mortality</subject><subject>Databases, Factual - statistics &amp; numerical data</subject><subject>Databases, Factual - trends</subject><subject>Female</subject><subject>Humans</subject><subject>Kaplan-Meier Estimate</subject><subject>Male</subject><subject>Models, Statistical</subject><subject>Risk Factors</subject><subject>Statistical Primer for Cardiovascular Research</subject><subject>Statistics as Topic - methods</subject><subject>Survival Analysis</subject><issn>0009-7322</issn><issn>1524-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1u1DAUhS0EokPhFVDYsUm5jv_iDVIUfjrSiFalXVuOc6djmokHO5mqb4_LtFW7snz83WNbHyGfKJxQKumXdnnRXq2ay-XZr-a0yZk4AaoU1a_IgoqKl1ww_ZosAECXilXVEXmX0p-8lUyJt-SokrWoKw0Lcr4cpxj62U0-jMUUimmDRTPa4S75VIR18XuOe7-3Q_HNTrbw43_gPGLC0eE90IbtDic_XhcXPt2k9-TN2g4JPzysx-Tqx_fL9rRcnf1cts2qdEIDlMJJJrradY6uO6Uq3Usre6ilVpx3KDqUUtVasq6ziluHteaCAlAHPWAt2TH5eujdzd0We4f5H3Ywu-i3Nt6ZYL15eTL6jbkOe8MVpxx0Lvj8UBDD3xnTZLY-ORwGO2KYk6FKcsaUpiyj-oC6GFKKuH66hoK5N2JeGsmZMAcjefbj83c-TT4qyAA_ALdhmDCmm2G-xWg2aIdpY7IzYLmqrIBKqEBDmRMK7B9knpku</recordid><startdate>20160209</startdate><enddate>20160209</enddate><creator>Austin, Peter C</creator><creator>Lee, Douglas S</creator><creator>Fine, Jason P</creator><general>by the American College of Cardiology Foundation and the American Heart Association, Inc</general><general>Lippincott Williams &amp; Wilkins</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160209</creationdate><title>Introduction to the Analysis of Survival Data in the Presence of Competing Risks</title><author>Austin, Peter C ; Lee, Douglas S ; Fine, Jason P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5900-5c635b8cbc1fb7729d6a6d0869744be5be6678963bba74ace89451001c0d0e863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Cardiovascular Diseases - diagnosis</topic><topic>Cardiovascular Diseases - mortality</topic><topic>Databases, Factual - statistics &amp; numerical data</topic><topic>Databases, Factual - trends</topic><topic>Female</topic><topic>Humans</topic><topic>Kaplan-Meier Estimate</topic><topic>Male</topic><topic>Models, Statistical</topic><topic>Risk Factors</topic><topic>Statistical Primer for Cardiovascular Research</topic><topic>Statistics as Topic - methods</topic><topic>Survival Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Austin, Peter C</creatorcontrib><creatorcontrib>Lee, Douglas S</creatorcontrib><creatorcontrib>Fine, Jason P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Circulation (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Austin, Peter C</au><au>Lee, Douglas S</au><au>Fine, Jason P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction to the Analysis of Survival Data in the Presence of Competing Risks</atitle><jtitle>Circulation (New York, N.Y.)</jtitle><addtitle>Circulation</addtitle><date>2016-02-09</date><risdate>2016</risdate><volume>133</volume><issue>6</issue><spage>601</spage><epage>609</epage><pages>601-609</pages><issn>0009-7322</issn><eissn>1524-4539</eissn><abstract>Competing risks occur frequently in the analysis of survival data. A competing risk is an event whose occurrence precludes the occurrence of the primary event of interest. In a study examining time to death attributable to cardiovascular causes, death attributable to noncardiovascular causes is a competing risk. When estimating the crude incidence of outcomes, analysts should use the cumulative incidence function, rather than the complement of the Kaplan-Meier survival function. The use of the Kaplan-Meier survival function results in estimates of incidence that are biased upward, regardless of whether the competing events are independent of one another. When fitting regression models in the presence of competing risks, researchers can choose from 2 different families of modelsmodeling the effect of covariates on the cause-specific hazard of the outcome or modeling the effect of covariates on the cumulative incidence function. The former allows one to estimate the effect of the covariates on the rate of occurrence of the outcome in those subjects who are currently event free. The latter allows one to estimate the effect of covariates on the absolute risk of the outcome over time. The former family of models may be better suited for addressing etiologic questions, whereas the latter model may be better suited for estimating a patient’s clinical prognosis. We illustrate the application of these methods by examining cause-specific mortality in patients hospitalized with heart failure. Statistical software code in both R and SAS is provided.</abstract><cop>United States</cop><pub>by the American College of Cardiology Foundation and the American Heart Association, Inc</pub><pmid>26858290</pmid><doi>10.1161/CIRCULATIONAHA.115.017719</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7322
ispartof Circulation (New York, N.Y.), 2016-02, Vol.133 (6), p.601-609
issn 0009-7322
1524-4539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4741409
source MEDLINE; EZB-FREE-00999 freely available EZB journals; American Heart Association; Journals@Ovid Complete
subjects Aged
Aged, 80 and over
Cardiovascular Diseases - diagnosis
Cardiovascular Diseases - mortality
Databases, Factual - statistics & numerical data
Databases, Factual - trends
Female
Humans
Kaplan-Meier Estimate
Male
Models, Statistical
Risk Factors
Statistical Primer for Cardiovascular Research
Statistics as Topic - methods
Survival Analysis
title Introduction to the Analysis of Survival Data in the Presence of Competing Risks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20to%20the%20Analysis%20of%20Survival%20Data%20in%20the%20Presence%20of%20Competing%20Risks&rft.jtitle=Circulation%20(New%20York,%20N.Y.)&rft.au=Austin,%20Peter%20C&rft.date=2016-02-09&rft.volume=133&rft.issue=6&rft.spage=601&rft.epage=609&rft.pages=601-609&rft.issn=0009-7322&rft.eissn=1524-4539&rft_id=info:doi/10.1161/CIRCULATIONAHA.115.017719&rft_dat=%3Cproquest_pubme%3E1764337913%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764337913&rft_id=info:pmid/26858290&rfr_iscdi=true