Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the splotch mouse model

Purpose Advanced methodologies for visualizing novel tissue contrast are essential for phenotyping the ever‐increasing number of mutant mouse embryos being generated. Although diffusion microscopic MRI (μMRI) has been used to phenotype embryos, widespread routine use is limited by extended scanning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2015-02, Vol.73 (2), p.731-739
Hauptverfasser: Norris, Francesca C., Siow, Bernard M., Cleary, Jon O., Wells, Jack A., De Castro, Sandra C.P., Ordidge, Roger J., Greene, Nicholas D.E., Copp, Andrew J., Scambler, Peter J., Alexander, Daniel. C., Lythgoe, Mark F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 739
container_issue 2
container_start_page 731
container_title Magnetic resonance in medicine
container_volume 73
creator Norris, Francesca C.
Siow, Bernard M.
Cleary, Jon O.
Wells, Jack A.
De Castro, Sandra C.P.
Ordidge, Roger J.
Greene, Nicholas D.E.
Copp, Andrew J.
Scambler, Peter J.
Alexander, Daniel. C.
Lythgoe, Mark F.
description Purpose Advanced methodologies for visualizing novel tissue contrast are essential for phenotyping the ever‐increasing number of mutant mouse embryos being generated. Although diffusion microscopic MRI (μMRI) has been used to phenotype embryos, widespread routine use is limited by extended scanning times, and there is no established experimental procedure ensuring optimal data acquisition. Methods We developed two protocols for designing experimental procedures for diffusion μMRI of mouse embryos, which take into account the effect of embryo preparation and pulse sequence parameters on resulting data. We applied our protocols to an investigation of the splotch mouse model as an example implementation. Results The protocols provide DTI data in 24 min per direction at 75 μm isotropic using a three‐dimensional fast spin‐echo sequence, enabling preliminary imaging in 3 h (6 directions plus one unweighted measurement), or detailed imaging in 9 h (42 directions plus six unweighted measurements). Application to the splotch model enabled assessment of spinal cord pathology. Conclusion We present guidelines for designing diffusion μMRI experiments, which may be adapted for different studies and research facilities. As they are suitable for routine use and may be readily implemented, we hope they will be adopted by the phenotyping community. Magn Reson Med 73:731–739, 2015. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the originalwork is properly cited.
doi_str_mv 10.1002/mrm.25145
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4737188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3559195861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6505-5d4ba9c04b247bed7f45afcbc757f83fa5f95ce4841e5ba8518d7903546a660e3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EotvCgT-ALHGhh7R2_JVwQIItlEpdQCsQqBfLcRzWxY6DnQD77_F2tytAQuLkwzzzeGZeAB5hdIIRKk999Cclw5TdATPMyrIoWU3vghkSFBUE1_QAHKZ0jRCqa0Hvg4OSckJRXc1AOLNdNyUbeuitjiHpMFgNF8sLGDo4rgz0YUoGGt_EdXgG38cwBh0cVH0Lh6j0aLVy0PrBGW_6UY0ble1vWtPgwqhXO4UPrXEPwL1OuWQe7t4j8PH1qw_zN8Xlu_OL-YvLQnOGWMFa2qhaI9qUVDSmFR1lqtONFkx0FekU62qmDa0oNqxRFcNVK2pEGOWKc2TIEXi-9Q5T402r82hROTlE61Vcy6Cs_LPS25X8Er5LKojAVZUFT3eCGL5NJo3S26SNc6o3eR2Jef6rLhEn_4OWlFDMeEaf_IVehyn2-RKZoqwiSGCUqeMttQkkRdPt58ZIbhKXOXF5k3hmH_--6J68jTgDp1vgh3Vm_W-TXCwXt8pi22HTaH7uO1T8Knm-DpOf3p7Lq6vlnNcvz-Rn8gvB08YW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645830710</pqid></control><display><type>article</type><title>Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the splotch mouse model</title><source>MEDLINE</source><source>Wiley Journals</source><source>Wiley Free Content</source><creator>Norris, Francesca C. ; Siow, Bernard M. ; Cleary, Jon O. ; Wells, Jack A. ; De Castro, Sandra C.P. ; Ordidge, Roger J. ; Greene, Nicholas D.E. ; Copp, Andrew J. ; Scambler, Peter J. ; Alexander, Daniel. C. ; Lythgoe, Mark F.</creator><creatorcontrib>Norris, Francesca C. ; Siow, Bernard M. ; Cleary, Jon O. ; Wells, Jack A. ; De Castro, Sandra C.P. ; Ordidge, Roger J. ; Greene, Nicholas D.E. ; Copp, Andrew J. ; Scambler, Peter J. ; Alexander, Daniel. C. ; Lythgoe, Mark F.</creatorcontrib><description>Purpose Advanced methodologies for visualizing novel tissue contrast are essential for phenotyping the ever‐increasing number of mutant mouse embryos being generated. Although diffusion microscopic MRI (μMRI) has been used to phenotype embryos, widespread routine use is limited by extended scanning times, and there is no established experimental procedure ensuring optimal data acquisition. Methods We developed two protocols for designing experimental procedures for diffusion μMRI of mouse embryos, which take into account the effect of embryo preparation and pulse sequence parameters on resulting data. We applied our protocols to an investigation of the splotch mouse model as an example implementation. Results The protocols provide DTI data in 24 min per direction at 75 μm isotropic using a three‐dimensional fast spin‐echo sequence, enabling preliminary imaging in 3 h (6 directions plus one unweighted measurement), or detailed imaging in 9 h (42 directions plus six unweighted measurements). Application to the splotch model enabled assessment of spinal cord pathology. Conclusion We present guidelines for designing diffusion μMRI experiments, which may be adapted for different studies and research facilities. As they are suitable for routine use and may be readily implemented, we hope they will be adopted by the phenotyping community. Magn Reson Med 73:731–739, 2015. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the originalwork is properly cited.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.25145</identifier><identifier>PMID: 24634098</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; Diffusion Magnetic Resonance Imaging - methods ; diffusion microscopic magnetic resonance imaging ; Embryo, Mammalian - cytology ; Image Enhancement - methods ; Magnetic Resonance Imaging - methods ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microscopy - methods ; mouse embryo ; Paired Box Transcription Factors - genetics ; PAX3 Transcription Factor ; phenotyping ; Preclinical and Clinical Imaging—Full Papers ; Prenatal Diagnosis - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Specimen Handling - methods ; spina bifida ; Spinal Cord - cytology ; Spinal Cord - embryology ; splotch mouse model</subject><ispartof>Magnetic resonance in medicine, 2015-02, Vol.73 (2), p.731-739</ispartof><rights>2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2014 Wiley Periodicals, Inc.</rights><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6505-5d4ba9c04b247bed7f45afcbc757f83fa5f95ce4841e5ba8518d7903546a660e3</citedby><cites>FETCH-LOGICAL-c6505-5d4ba9c04b247bed7f45afcbc757f83fa5f95ce4841e5ba8518d7903546a660e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.25145$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.25145$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24634098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Norris, Francesca C.</creatorcontrib><creatorcontrib>Siow, Bernard M.</creatorcontrib><creatorcontrib>Cleary, Jon O.</creatorcontrib><creatorcontrib>Wells, Jack A.</creatorcontrib><creatorcontrib>De Castro, Sandra C.P.</creatorcontrib><creatorcontrib>Ordidge, Roger J.</creatorcontrib><creatorcontrib>Greene, Nicholas D.E.</creatorcontrib><creatorcontrib>Copp, Andrew J.</creatorcontrib><creatorcontrib>Scambler, Peter J.</creatorcontrib><creatorcontrib>Alexander, Daniel. C.</creatorcontrib><creatorcontrib>Lythgoe, Mark F.</creatorcontrib><title>Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the splotch mouse model</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Purpose Advanced methodologies for visualizing novel tissue contrast are essential for phenotyping the ever‐increasing number of mutant mouse embryos being generated. Although diffusion microscopic MRI (μMRI) has been used to phenotype embryos, widespread routine use is limited by extended scanning times, and there is no established experimental procedure ensuring optimal data acquisition. Methods We developed two protocols for designing experimental procedures for diffusion μMRI of mouse embryos, which take into account the effect of embryo preparation and pulse sequence parameters on resulting data. We applied our protocols to an investigation of the splotch mouse model as an example implementation. Results The protocols provide DTI data in 24 min per direction at 75 μm isotropic using a three‐dimensional fast spin‐echo sequence, enabling preliminary imaging in 3 h (6 directions plus one unweighted measurement), or detailed imaging in 9 h (42 directions plus six unweighted measurements). Application to the splotch model enabled assessment of spinal cord pathology. Conclusion We present guidelines for designing diffusion μMRI experiments, which may be adapted for different studies and research facilities. As they are suitable for routine use and may be readily implemented, we hope they will be adopted by the phenotyping community. Magn Reson Med 73:731–739, 2015. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the originalwork is properly cited.</description><subject>Animals</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>diffusion microscopic magnetic resonance imaging</subject><subject>Embryo, Mammalian - cytology</subject><subject>Image Enhancement - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microscopy - methods</subject><subject>mouse embryo</subject><subject>Paired Box Transcription Factors - genetics</subject><subject>PAX3 Transcription Factor</subject><subject>phenotyping</subject><subject>Preclinical and Clinical Imaging—Full Papers</subject><subject>Prenatal Diagnosis - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Specimen Handling - methods</subject><subject>spina bifida</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - embryology</subject><subject>splotch mouse model</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EotvCgT-ALHGhh7R2_JVwQIItlEpdQCsQqBfLcRzWxY6DnQD77_F2tytAQuLkwzzzeGZeAB5hdIIRKk999Cclw5TdATPMyrIoWU3vghkSFBUE1_QAHKZ0jRCqa0Hvg4OSckJRXc1AOLNdNyUbeuitjiHpMFgNF8sLGDo4rgz0YUoGGt_EdXgG38cwBh0cVH0Lh6j0aLVy0PrBGW_6UY0ble1vWtPgwqhXO4UPrXEPwL1OuWQe7t4j8PH1qw_zN8Xlu_OL-YvLQnOGWMFa2qhaI9qUVDSmFR1lqtONFkx0FekU62qmDa0oNqxRFcNVK2pEGOWKc2TIEXi-9Q5T402r82hROTlE61Vcy6Cs_LPS25X8Er5LKojAVZUFT3eCGL5NJo3S26SNc6o3eR2Jef6rLhEn_4OWlFDMeEaf_IVehyn2-RKZoqwiSGCUqeMttQkkRdPt58ZIbhKXOXF5k3hmH_--6J68jTgDp1vgh3Vm_W-TXCwXt8pi22HTaH7uO1T8Knm-DpOf3p7Lq6vlnNcvz-Rn8gvB08YW</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Norris, Francesca C.</creator><creator>Siow, Bernard M.</creator><creator>Cleary, Jon O.</creator><creator>Wells, Jack A.</creator><creator>De Castro, Sandra C.P.</creator><creator>Ordidge, Roger J.</creator><creator>Greene, Nicholas D.E.</creator><creator>Copp, Andrew J.</creator><creator>Scambler, Peter J.</creator><creator>Alexander, Daniel. C.</creator><creator>Lythgoe, Mark F.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>201502</creationdate><title>Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the splotch mouse model</title><author>Norris, Francesca C. ; Siow, Bernard M. ; Cleary, Jon O. ; Wells, Jack A. ; De Castro, Sandra C.P. ; Ordidge, Roger J. ; Greene, Nicholas D.E. ; Copp, Andrew J. ; Scambler, Peter J. ; Alexander, Daniel. C. ; Lythgoe, Mark F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6505-5d4ba9c04b247bed7f45afcbc757f83fa5f95ce4841e5ba8518d7903546a660e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>diffusion microscopic magnetic resonance imaging</topic><topic>Embryo, Mammalian - cytology</topic><topic>Image Enhancement - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microscopy - methods</topic><topic>mouse embryo</topic><topic>Paired Box Transcription Factors - genetics</topic><topic>PAX3 Transcription Factor</topic><topic>phenotyping</topic><topic>Preclinical and Clinical Imaging—Full Papers</topic><topic>Prenatal Diagnosis - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Specimen Handling - methods</topic><topic>spina bifida</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - embryology</topic><topic>splotch mouse model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norris, Francesca C.</creatorcontrib><creatorcontrib>Siow, Bernard M.</creatorcontrib><creatorcontrib>Cleary, Jon O.</creatorcontrib><creatorcontrib>Wells, Jack A.</creatorcontrib><creatorcontrib>De Castro, Sandra C.P.</creatorcontrib><creatorcontrib>Ordidge, Roger J.</creatorcontrib><creatorcontrib>Greene, Nicholas D.E.</creatorcontrib><creatorcontrib>Copp, Andrew J.</creatorcontrib><creatorcontrib>Scambler, Peter J.</creatorcontrib><creatorcontrib>Alexander, Daniel. C.</creatorcontrib><creatorcontrib>Lythgoe, Mark F.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norris, Francesca C.</au><au>Siow, Bernard M.</au><au>Cleary, Jon O.</au><au>Wells, Jack A.</au><au>De Castro, Sandra C.P.</au><au>Ordidge, Roger J.</au><au>Greene, Nicholas D.E.</au><au>Copp, Andrew J.</au><au>Scambler, Peter J.</au><au>Alexander, Daniel. C.</au><au>Lythgoe, Mark F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the splotch mouse model</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2015-02</date><risdate>2015</risdate><volume>73</volume><issue>2</issue><spage>731</spage><epage>739</epage><pages>731-739</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose Advanced methodologies for visualizing novel tissue contrast are essential for phenotyping the ever‐increasing number of mutant mouse embryos being generated. Although diffusion microscopic MRI (μMRI) has been used to phenotype embryos, widespread routine use is limited by extended scanning times, and there is no established experimental procedure ensuring optimal data acquisition. Methods We developed two protocols for designing experimental procedures for diffusion μMRI of mouse embryos, which take into account the effect of embryo preparation and pulse sequence parameters on resulting data. We applied our protocols to an investigation of the splotch mouse model as an example implementation. Results The protocols provide DTI data in 24 min per direction at 75 μm isotropic using a three‐dimensional fast spin‐echo sequence, enabling preliminary imaging in 3 h (6 directions plus one unweighted measurement), or detailed imaging in 9 h (42 directions plus six unweighted measurements). Application to the splotch model enabled assessment of spinal cord pathology. Conclusion We present guidelines for designing diffusion μMRI experiments, which may be adapted for different studies and research facilities. As they are suitable for routine use and may be readily implemented, we hope they will be adopted by the phenotyping community. Magn Reson Med 73:731–739, 2015. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the originalwork is properly cited.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24634098</pmid><doi>10.1002/mrm.25145</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2015-02, Vol.73 (2), p.731-739
issn 0740-3194
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4737188
source MEDLINE; Wiley Journals; Wiley Free Content
subjects Animals
Diffusion Magnetic Resonance Imaging - methods
diffusion microscopic magnetic resonance imaging
Embryo, Mammalian - cytology
Image Enhancement - methods
Magnetic Resonance Imaging - methods
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microscopy - methods
mouse embryo
Paired Box Transcription Factors - genetics
PAX3 Transcription Factor
phenotyping
Preclinical and Clinical Imaging—Full Papers
Prenatal Diagnosis - methods
Reproducibility of Results
Sensitivity and Specificity
Specimen Handling - methods
spina bifida
Spinal Cord - cytology
Spinal Cord - embryology
splotch mouse model
title Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the splotch mouse model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20microscopic%20MRI%20of%20the%20mouse%20embryo:%20Protocol%20and%20practical%20implementation%20in%20the%20splotch%20mouse%20model&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Norris,%20Francesca%20C.&rft.date=2015-02&rft.volume=73&rft.issue=2&rft.spage=731&rft.epage=739&rft.pages=731-739&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.25145&rft_dat=%3Cproquest_pubme%3E3559195861%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645830710&rft_id=info:pmid/24634098&rfr_iscdi=true