A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes
Feldman and colleagues describe a plasmonic gold chip for distinguishing type 1 from type 2 diabetes using ultralow volumes of serum and with comparable sensitivity to the current gold standard, radioimmunoassays. Type 1 diabetes (T1D) is an autoimmune disease, whereas type 2 diabetes (T2D) results...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2014-08, Vol.20 (8), p.948-953 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 953 |
---|---|
container_issue | 8 |
container_start_page | 948 |
container_title | Nature medicine |
container_volume | 20 |
creator | Zhang, Bo Kumar, Rajiv B Dai, Hongjie Feldman, Brian J |
description | Feldman and colleagues describe a plasmonic gold chip for distinguishing type 1 from type 2 diabetes using ultralow volumes of serum and with comparable sensitivity to the current gold standard, radioimmunoassays.
Type 1 diabetes (T1D) is an autoimmune disease, whereas type 2 diabetes (T2D) results from insulin resistance and beta cell dysfunction. Previously, the onset of these two separate diseases was easily distinguished, with children being most at risk for T1D and T2D occurring in overweight adults. However, the dramatic rise in obesity, coupled with the notable increase in T1D, has created a large overlap in these previously discrete patient populations. Delayed diagnosis of T1D can result in severe illness or death, and rapid diagnosis of T1D is critical for the efficacy of emerging therapies. However, attempts to apply next-generation platforms have been unsuccessful for detecting diabetes biomarkers. Here we describe the development of a plasmonic gold chip for near-infrared fluorescence–enhanced (NIR-FE) detection of islet cell–targeting autoantibodies. We demonstrate that this platform has high sensitivity and specificity for the diagnosis of T1D and can be used to discover previously unknown biomarkers of T1D. |
doi_str_mv | 10.1038/nm.3619 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4736508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A381285200</galeid><sourcerecordid>A381285200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c700t-bfe404e8706a9182fd52cca1780f09c7cb234903f3b1b66fa1447c1547263f1b3</originalsourceid><addsrcrecordid>eNqNkk1r3DAQhk1padK09B8UQ6EfB28ly7LkS2EJabsQCPSL3oQsj7xKbcmV7ND995FJmqzDHooOkmaeeTWjmSR5idEKI8I_2H5FSlw9So4xLcoMM_TrcTwjxjNe0fIoeRbCJUKIIFo9TY5yGoN4To-TzTodOhl6Z41K1dYMqXY-rY3rpf8NPm1MUO4K_C6Vtok32VoXTEidTsfdACmebTWMEJ4nT7TsAry43U-SH5_Ovp9-yc4vPm9O1-eZYgiNWa2hQAVwhkpZYZ7rhuZKScw40qhSTNU5KSpENKlxXZZa4qJgKlbF8pJoXJOT5OON7jDVPTQK7OhlJwZvYso74aQRS481W9G6K1EwUlLEo8C7WwHv_kwQRtHHIqHrpAU3BYEpzQmjrEQRff0AvXSTt7G8mcIMI0z5PdXKDoSx2sV31Swq1oTjnNMczVrZAaoFCzFJZ0GbaF7wqwN8XA30Rh0MeL8IiMwIf8dWTiGIzbev_89e_Fyyb_bYLchu3AbXTaNxNizBtzeg8i4ED_quKRiJeUyF7cU8ppF8td_DO-7fXN73KESXbcHvffwDrWu_7Ooy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551710158</pqid></control><display><type>article</type><title>A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Zhang, Bo ; Kumar, Rajiv B ; Dai, Hongjie ; Feldman, Brian J</creator><creatorcontrib>Zhang, Bo ; Kumar, Rajiv B ; Dai, Hongjie ; Feldman, Brian J</creatorcontrib><description>Feldman and colleagues describe a plasmonic gold chip for distinguishing type 1 from type 2 diabetes using ultralow volumes of serum and with comparable sensitivity to the current gold standard, radioimmunoassays.
Type 1 diabetes (T1D) is an autoimmune disease, whereas type 2 diabetes (T2D) results from insulin resistance and beta cell dysfunction. Previously, the onset of these two separate diseases was easily distinguished, with children being most at risk for T1D and T2D occurring in overweight adults. However, the dramatic rise in obesity, coupled with the notable increase in T1D, has created a large overlap in these previously discrete patient populations. Delayed diagnosis of T1D can result in severe illness or death, and rapid diagnosis of T1D is critical for the efficacy of emerging therapies. However, attempts to apply next-generation platforms have been unsuccessful for detecting diabetes biomarkers. Here we describe the development of a plasmonic gold chip for near-infrared fluorescence–enhanced (NIR-FE) detection of islet cell–targeting autoantibodies. We demonstrate that this platform has high sensitivity and specificity for the diagnosis of T1D and can be used to discover previously unknown biomarkers of T1D.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/nm.3619</identifier><identifier>PMID: 25038825</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/350 ; 631/250/38 ; 692/53/2421 ; 692/699/2743/137/1418 ; Analysis ; Autoantibodies - blood ; Autoantibodies - immunology ; Autoimmune diseases ; Autoimmunity ; Biomarkers ; Biomarkers - blood ; Biomedicine ; Cancer Research ; Cells ; Diabetes ; Diabetes Mellitus, Type 1 - diagnosis ; Diagnosis ; Fluorescence ; Gold ; Humans ; Infectious Diseases ; Islets of Langerhans - immunology ; Medical diagnosis ; Metabolic Diseases ; Molecular Medicine ; Neurosciences ; Obesity ; Risk factors ; Sensitivity and Specificity ; Spectroscopy, Near-Infrared ; Surface Plasmon Resonance - methods ; technical-report ; Type 1 diabetes</subject><ispartof>Nature medicine, 2014-08, Vol.20 (8), p.948-953</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c700t-bfe404e8706a9182fd52cca1780f09c7cb234903f3b1b66fa1447c1547263f1b3</citedby><cites>FETCH-LOGICAL-c700t-bfe404e8706a9182fd52cca1780f09c7cb234903f3b1b66fa1447c1547263f1b3</cites><orcidid>0000-0003-0743-4816 ; 0000000307434816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nm.3619$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nm.3619$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25038825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Kumar, Rajiv B</creatorcontrib><creatorcontrib>Dai, Hongjie</creatorcontrib><creatorcontrib>Feldman, Brian J</creatorcontrib><title>A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Feldman and colleagues describe a plasmonic gold chip for distinguishing type 1 from type 2 diabetes using ultralow volumes of serum and with comparable sensitivity to the current gold standard, radioimmunoassays.
Type 1 diabetes (T1D) is an autoimmune disease, whereas type 2 diabetes (T2D) results from insulin resistance and beta cell dysfunction. Previously, the onset of these two separate diseases was easily distinguished, with children being most at risk for T1D and T2D occurring in overweight adults. However, the dramatic rise in obesity, coupled with the notable increase in T1D, has created a large overlap in these previously discrete patient populations. Delayed diagnosis of T1D can result in severe illness or death, and rapid diagnosis of T1D is critical for the efficacy of emerging therapies. However, attempts to apply next-generation platforms have been unsuccessful for detecting diabetes biomarkers. Here we describe the development of a plasmonic gold chip for near-infrared fluorescence–enhanced (NIR-FE) detection of islet cell–targeting autoantibodies. We demonstrate that this platform has high sensitivity and specificity for the diagnosis of T1D and can be used to discover previously unknown biomarkers of T1D.</description><subject>631/1647/350</subject><subject>631/250/38</subject><subject>692/53/2421</subject><subject>692/699/2743/137/1418</subject><subject>Analysis</subject><subject>Autoantibodies - blood</subject><subject>Autoantibodies - immunology</subject><subject>Autoimmune diseases</subject><subject>Autoimmunity</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cells</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 1 - diagnosis</subject><subject>Diagnosis</subject><subject>Fluorescence</subject><subject>Gold</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Islets of Langerhans - immunology</subject><subject>Medical diagnosis</subject><subject>Metabolic Diseases</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Obesity</subject><subject>Risk factors</subject><subject>Sensitivity and Specificity</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Surface Plasmon Resonance - methods</subject><subject>technical-report</subject><subject>Type 1 diabetes</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk1r3DAQhk1padK09B8UQ6EfB28ly7LkS2EJabsQCPSL3oQsj7xKbcmV7ND995FJmqzDHooOkmaeeTWjmSR5idEKI8I_2H5FSlw9So4xLcoMM_TrcTwjxjNe0fIoeRbCJUKIIFo9TY5yGoN4To-TzTodOhl6Z41K1dYMqXY-rY3rpf8NPm1MUO4K_C6Vtok32VoXTEidTsfdACmebTWMEJ4nT7TsAry43U-SH5_Ovp9-yc4vPm9O1-eZYgiNWa2hQAVwhkpZYZ7rhuZKScw40qhSTNU5KSpENKlxXZZa4qJgKlbF8pJoXJOT5OON7jDVPTQK7OhlJwZvYso74aQRS481W9G6K1EwUlLEo8C7WwHv_kwQRtHHIqHrpAU3BYEpzQmjrEQRff0AvXSTt7G8mcIMI0z5PdXKDoSx2sV31Swq1oTjnNMczVrZAaoFCzFJZ0GbaF7wqwN8XA30Rh0MeL8IiMwIf8dWTiGIzbev_89e_Fyyb_bYLchu3AbXTaNxNizBtzeg8i4ED_quKRiJeUyF7cU8ppF8td_DO-7fXN73KESXbcHvffwDrWu_7Ooy</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Zhang, Bo</creator><creator>Kumar, Rajiv B</creator><creator>Dai, Hongjie</creator><creator>Feldman, Brian J</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0743-4816</orcidid><orcidid>https://orcid.org/0000000307434816</orcidid></search><sort><creationdate>20140801</creationdate><title>A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes</title><author>Zhang, Bo ; Kumar, Rajiv B ; Dai, Hongjie ; Feldman, Brian J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c700t-bfe404e8706a9182fd52cca1780f09c7cb234903f3b1b66fa1447c1547263f1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/1647/350</topic><topic>631/250/38</topic><topic>692/53/2421</topic><topic>692/699/2743/137/1418</topic><topic>Analysis</topic><topic>Autoantibodies - blood</topic><topic>Autoantibodies - immunology</topic><topic>Autoimmune diseases</topic><topic>Autoimmunity</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cells</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 1 - diagnosis</topic><topic>Diagnosis</topic><topic>Fluorescence</topic><topic>Gold</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Islets of Langerhans - immunology</topic><topic>Medical diagnosis</topic><topic>Metabolic Diseases</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Obesity</topic><topic>Risk factors</topic><topic>Sensitivity and Specificity</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Surface Plasmon Resonance - methods</topic><topic>technical-report</topic><topic>Type 1 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Kumar, Rajiv B</creatorcontrib><creatorcontrib>Dai, Hongjie</creatorcontrib><creatorcontrib>Feldman, Brian J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bo</au><au>Kumar, Rajiv B</au><au>Dai, Hongjie</au><au>Feldman, Brian J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>20</volume><issue>8</issue><spage>948</spage><epage>953</epage><pages>948-953</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Feldman and colleagues describe a plasmonic gold chip for distinguishing type 1 from type 2 diabetes using ultralow volumes of serum and with comparable sensitivity to the current gold standard, radioimmunoassays.
Type 1 diabetes (T1D) is an autoimmune disease, whereas type 2 diabetes (T2D) results from insulin resistance and beta cell dysfunction. Previously, the onset of these two separate diseases was easily distinguished, with children being most at risk for T1D and T2D occurring in overweight adults. However, the dramatic rise in obesity, coupled with the notable increase in T1D, has created a large overlap in these previously discrete patient populations. Delayed diagnosis of T1D can result in severe illness or death, and rapid diagnosis of T1D is critical for the efficacy of emerging therapies. However, attempts to apply next-generation platforms have been unsuccessful for detecting diabetes biomarkers. Here we describe the development of a plasmonic gold chip for near-infrared fluorescence–enhanced (NIR-FE) detection of islet cell–targeting autoantibodies. We demonstrate that this platform has high sensitivity and specificity for the diagnosis of T1D and can be used to discover previously unknown biomarkers of T1D.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25038825</pmid><doi>10.1038/nm.3619</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0743-4816</orcidid><orcidid>https://orcid.org/0000000307434816</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2014-08, Vol.20 (8), p.948-953 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4736508 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/1647/350 631/250/38 692/53/2421 692/699/2743/137/1418 Analysis Autoantibodies - blood Autoantibodies - immunology Autoimmune diseases Autoimmunity Biomarkers Biomarkers - blood Biomedicine Cancer Research Cells Diabetes Diabetes Mellitus, Type 1 - diagnosis Diagnosis Fluorescence Gold Humans Infectious Diseases Islets of Langerhans - immunology Medical diagnosis Metabolic Diseases Molecular Medicine Neurosciences Obesity Risk factors Sensitivity and Specificity Spectroscopy, Near-Infrared Surface Plasmon Resonance - methods technical-report Type 1 diabetes |
title | A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20plasmonic%20chip%20for%20biomarker%20discovery%20and%20diagnosis%20of%20type%201%20diabetes&rft.jtitle=Nature%20medicine&rft.au=Zhang,%20Bo&rft.date=2014-08-01&rft.volume=20&rft.issue=8&rft.spage=948&rft.epage=953&rft.pages=948-953&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/nm.3619&rft_dat=%3Cgale_pubme%3EA381285200%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551710158&rft_id=info:pmid/25038825&rft_galeid=A381285200&rfr_iscdi=true |