Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-02, Vol.6 (1), p.19994-19994, Article 19994
Hauptverfasser: Lu, Chenyang, Jin, Ke, Béland, Laurent K., Zhang, Feifei, Yang, Taini, Qiao, Liang, Zhang, Yanwen, Bei, Hongbin, Christen, Hans M., Stoller, Roger E., Wang, Lumin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19994
container_issue 1
container_start_page 19994
container_title Scientific reports
container_volume 6
creator Lu, Chenyang
Jin, Ke
Béland, Laurent K.
Zhang, Feifei
Yang, Taini
Qiao, Liang
Zhang, Yanwen
Bei, Hongbin
Christen, Hans M.
Stoller, Roger E.
Wang, Lumin
description Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.
doi_str_mv 10.1038/srep19994
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4734288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762344332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-b63204d29fa93ce72e5453e3114cc088ed40228bad7e38e5d1b41eaafefc10d23</originalsourceid><addsrcrecordid>eNplkUtvEzEUhUcIRKvSBX8AWbABpAE_M_YGqaQFIlVU4rG2PPad1JVjB3smUv49TlOiAN5cy_fzucc-TfOc4HcEM_m-ZFgTpRR_1JxSzEVLGaWPj_YnzXkpd7guQRUn6mlzQmeSKtHh02Z16TPYEd30BfLGjD5FlAZ0CcPu9JuJS0AmOnS1SWG67_qIFim2i5yN82YEh777uAyA5nlbRhOCj4C--vtbtXz00eQtugghbcuz5slgQoHzh3rW_Px09WP-pb2--byYX1y3VjAytv2MVfeOqsEoZqGjILhgwAjh1mIpwXFMqeyN64BJEI70nIAxAwyWYEfZWfNhr7ue-hU4C3HMJuh19qtqRifj9d-d6G_1Mm007xinUlaBl3uBVEavi_Uj2FubYqy_ogkVSnJWodcPU3L6NUEZ9coXCyGYCGkqmnQzyngFd4Ze_YPepSnH-geaSKUwEXVopd7sKZtTqbkOB8cE613Y-hB2ZV8cP_FA_om2Am_3QKmtGmM-Gvmf2m82rrN-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899015883</pqid></control><display><type>article</type><title>Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Lu, Chenyang ; Jin, Ke ; Béland, Laurent K. ; Zhang, Feifei ; Yang, Taini ; Qiao, Liang ; Zhang, Yanwen ; Bei, Hongbin ; Christen, Hans M. ; Stoller, Roger E. ; Wang, Lumin</creator><creatorcontrib>Lu, Chenyang ; Jin, Ke ; Béland, Laurent K. ; Zhang, Feifei ; Yang, Taini ; Qiao, Liang ; Zhang, Yanwen ; Bei, Hongbin ; Christen, Hans M. ; Stoller, Roger E. ; Wang, Lumin ; Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep19994</identifier><identifier>PMID: 26829570</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/1026 ; 639/766/387/1126 ; Alloys ; Defects ; Electron microscopy ; Energy dissipation ; Humanities and Social Sciences ; Irradiation ; MATERIALS SCIENCE ; Migration ; multidisciplinary ; Nickel ; Nuclear energy ; Radiation ; Science ; Spectrometry ; Temperature effects ; Transmission electron microscopy</subject><ispartof>Scientific reports, 2016-02, Vol.6 (1), p.19994-19994, Article 19994</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-b63204d29fa93ce72e5453e3114cc088ed40228bad7e38e5d1b41eaafefc10d23</citedby><cites>FETCH-LOGICAL-c531t-b63204d29fa93ce72e5453e3114cc088ed40228bad7e38e5d1b41eaafefc10d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4734288/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4734288/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26829570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1259843$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Chenyang</creatorcontrib><creatorcontrib>Jin, Ke</creatorcontrib><creatorcontrib>Béland, Laurent K.</creatorcontrib><creatorcontrib>Zhang, Feifei</creatorcontrib><creatorcontrib>Yang, Taini</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Zhang, Yanwen</creatorcontrib><creatorcontrib>Bei, Hongbin</creatorcontrib><creatorcontrib>Christen, Hans M.</creatorcontrib><creatorcontrib>Stoller, Roger E.</creatorcontrib><creatorcontrib>Wang, Lumin</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.</description><subject>639/301/1023/1026</subject><subject>639/766/387/1126</subject><subject>Alloys</subject><subject>Defects</subject><subject>Electron microscopy</subject><subject>Energy dissipation</subject><subject>Humanities and Social Sciences</subject><subject>Irradiation</subject><subject>MATERIALS SCIENCE</subject><subject>Migration</subject><subject>multidisciplinary</subject><subject>Nickel</subject><subject>Nuclear energy</subject><subject>Radiation</subject><subject>Science</subject><subject>Spectrometry</subject><subject>Temperature effects</subject><subject>Transmission electron microscopy</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkUtvEzEUhUcIRKvSBX8AWbABpAE_M_YGqaQFIlVU4rG2PPad1JVjB3smUv49TlOiAN5cy_fzucc-TfOc4HcEM_m-ZFgTpRR_1JxSzEVLGaWPj_YnzXkpd7guQRUn6mlzQmeSKtHh02Z16TPYEd30BfLGjD5FlAZ0CcPu9JuJS0AmOnS1SWG67_qIFim2i5yN82YEh777uAyA5nlbRhOCj4C--vtbtXz00eQtugghbcuz5slgQoHzh3rW_Px09WP-pb2--byYX1y3VjAytv2MVfeOqsEoZqGjILhgwAjh1mIpwXFMqeyN64BJEI70nIAxAwyWYEfZWfNhr7ue-hU4C3HMJuh19qtqRifj9d-d6G_1Mm007xinUlaBl3uBVEavi_Uj2FubYqy_ogkVSnJWodcPU3L6NUEZ9coXCyGYCGkqmnQzyngFd4Ze_YPepSnH-geaSKUwEXVopd7sKZtTqbkOB8cE613Y-hB2ZV8cP_FA_om2Am_3QKmtGmM-Gvmf2m82rrN-</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Lu, Chenyang</creator><creator>Jin, Ke</creator><creator>Béland, Laurent K.</creator><creator>Zhang, Feifei</creator><creator>Yang, Taini</creator><creator>Qiao, Liang</creator><creator>Zhang, Yanwen</creator><creator>Bei, Hongbin</creator><creator>Christen, Hans M.</creator><creator>Stoller, Roger E.</creator><creator>Wang, Lumin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20160201</creationdate><title>Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys</title><author>Lu, Chenyang ; Jin, Ke ; Béland, Laurent K. ; Zhang, Feifei ; Yang, Taini ; Qiao, Liang ; Zhang, Yanwen ; Bei, Hongbin ; Christen, Hans M. ; Stoller, Roger E. ; Wang, Lumin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-b63204d29fa93ce72e5453e3114cc088ed40228bad7e38e5d1b41eaafefc10d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/1023/1026</topic><topic>639/766/387/1126</topic><topic>Alloys</topic><topic>Defects</topic><topic>Electron microscopy</topic><topic>Energy dissipation</topic><topic>Humanities and Social Sciences</topic><topic>Irradiation</topic><topic>MATERIALS SCIENCE</topic><topic>Migration</topic><topic>multidisciplinary</topic><topic>Nickel</topic><topic>Nuclear energy</topic><topic>Radiation</topic><topic>Science</topic><topic>Spectrometry</topic><topic>Temperature effects</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Chenyang</creatorcontrib><creatorcontrib>Jin, Ke</creatorcontrib><creatorcontrib>Béland, Laurent K.</creatorcontrib><creatorcontrib>Zhang, Feifei</creatorcontrib><creatorcontrib>Yang, Taini</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Zhang, Yanwen</creatorcontrib><creatorcontrib>Bei, Hongbin</creatorcontrib><creatorcontrib>Christen, Hans M.</creatorcontrib><creatorcontrib>Stoller, Roger E.</creatorcontrib><creatorcontrib>Wang, Lumin</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Chenyang</au><au>Jin, Ke</au><au>Béland, Laurent K.</au><au>Zhang, Feifei</au><au>Yang, Taini</au><au>Qiao, Liang</au><au>Zhang, Yanwen</au><au>Bei, Hongbin</au><au>Christen, Hans M.</au><au>Stoller, Roger E.</au><au>Wang, Lumin</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>19994</spage><epage>19994</epage><pages>19994-19994</pages><artnum>19994</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26829570</pmid><doi>10.1038/srep19994</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-02, Vol.6 (1), p.19994-19994, Article 19994
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4734288
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 639/301/1023/1026
639/766/387/1126
Alloys
Defects
Electron microscopy
Energy dissipation
Humanities and Social Sciences
Irradiation
MATERIALS SCIENCE
Migration
multidisciplinary
Nickel
Nuclear energy
Radiation
Science
Spectrometry
Temperature effects
Transmission electron microscopy
title Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Observation%20of%20Defect%20Range%20and%20Evolution%20in%20Ion-Irradiated%20Single%20Crystalline%20Ni%20and%20Ni%20Binary%20Alloys&rft.jtitle=Scientific%20reports&rft.au=Lu,%20Chenyang&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Energy%20Dissipation%20to%20Defect%20Evolution%20(EDDE)&rft.date=2016-02-01&rft.volume=6&rft.issue=1&rft.spage=19994&rft.epage=19994&rft.pages=19994-19994&rft.artnum=19994&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep19994&rft_dat=%3Cproquest_pubme%3E1762344332%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899015883&rft_id=info:pmid/26829570&rfr_iscdi=true