Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair

Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of os...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2016-02, Vol.126 (2), p.509-526
Hauptverfasser: Hu, Kai, Olsen, Bjorn R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 526
container_issue 2
container_start_page 509
container_title The Journal of clinical investigation
container_volume 126
creator Hu, Kai
Olsen, Bjorn R
description Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of osteoblast-derived VEGF in healing of a bone defect. The results indicate that osteoblast-derived VEGF plays critical roles at several stages in the repair process. Using transgenic mice with osteoblast-specific deletion of Vegfa, we demonstrated that VEGF promoted macrophage recruitment and angiogenic responses in the inflammation phase, and optimal levels of VEGF were required for coupling of angiogenesis and osteogenesis in areas where repair occurs by intramembranous ossification. VEGF likely functions as a paracrine factor in this process because deletion of Vegfr2 in osteoblastic lineage cells enhanced osteoblastic maturation and mineralization. Furthermore, osteoblast- and hypertrophic chondrocyte-derived VEGF stimulated recruitment of blood vessels and osteoclasts and promoted cartilage resorption at the repair site during the periosteal endochondral ossification stage. Finally, osteoblast-derived VEGF stimulated osteoclast formation in the final remodeling phase of the repair process. These findings provide a basis for clinical strategies to improve bone regeneration and treat defects in bone healing.
doi_str_mv 10.1172/JCI82585
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4731163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A443060096</galeid><sourcerecordid>A443060096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-d5c3e8c139769eedd18b3595692482edef186f54af8ce10c62c20975faedf00c3</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhoMo7uwo-AukQRAvrflO-iIsw37Jwl7Ua0gnlZksmc6YdC_sv7fH2R0_Tp4Kqh7eqnqrEHpD8EdCFP30ZXWtqdDiGVoQIXSrKdPP0QJjStpOMX2CTmu9w5hwLvhLdEKlYoQrukD9bR0h98nWsfVQ4j345vv55UVTYD0lO0Jt8pFofAwBCgxjtGPMQ2MH3_R5gCbksj2k_FTisD5kC-xsLK_Qi2BThdePcYm-XZx_XV21N7eX16uzm9YJTufuwjHQjrBOyQ7Ae6J7JjohO8o1BQ-BaBkEt0E7INhJ6ijulAgWfMDYsSX6fNDdTf0WvJvHLDaZXYlbWx5MttH8XRnixqzzveGzGUSyWeDDo0DJPyaoo9nG6iAlO0CeqiFKaqFVp_D_oJRxRX6h7_5B7_JUhtmJPSU06-h8oiV6f6DWNoHZgE3jpuY07T2t5oxzhiXGnfzd2ZVca4FwXJBgs38G8_QMM_r2T0OO4NP12U-B8a-I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765839297</pqid></control><display><type>article</type><title>Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair</title><source>Journals@Ovid Ovid Autoload</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hu, Kai ; Olsen, Bjorn R</creator><creatorcontrib>Hu, Kai ; Olsen, Bjorn R</creatorcontrib><description>Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of osteoblast-derived VEGF in healing of a bone defect. The results indicate that osteoblast-derived VEGF plays critical roles at several stages in the repair process. Using transgenic mice with osteoblast-specific deletion of Vegfa, we demonstrated that VEGF promoted macrophage recruitment and angiogenic responses in the inflammation phase, and optimal levels of VEGF were required for coupling of angiogenesis and osteogenesis in areas where repair occurs by intramembranous ossification. VEGF likely functions as a paracrine factor in this process because deletion of Vegfr2 in osteoblastic lineage cells enhanced osteoblastic maturation and mineralization. Furthermore, osteoblast- and hypertrophic chondrocyte-derived VEGF stimulated recruitment of blood vessels and osteoclasts and promoted cartilage resorption at the repair site during the periosteal endochondral ossification stage. Finally, osteoblast-derived VEGF stimulated osteoclast formation in the final remodeling phase of the repair process. These findings provide a basis for clinical strategies to improve bone regeneration and treat defects in bone healing.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI82585</identifier><identifier>PMID: 26731472</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Angiogenesis ; Animals ; Biomedical research ; Bone regeneration ; Bone Regeneration - physiology ; Bones ; Calcification, Physiologic - physiology ; Cell differentiation ; Cell Differentiation - physiology ; Defects ; Genetic aspects ; Health aspects ; Laboratory animals ; Mice ; Mice, Knockout ; Mineralization ; Neutrophils ; Osteoblasts ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Osteogenesis - physiology ; Osteoporosis ; Studies ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>The Journal of clinical investigation, 2016-02, Vol.126 (2), p.509-526</ispartof><rights>COPYRIGHT 2016 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Feb 2016</rights><rights>Copyright © 2016, American Society for Clinical Investigation 2016 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-d5c3e8c139769eedd18b3595692482edef186f54af8ce10c62c20975faedf00c3</citedby><cites>FETCH-LOGICAL-c542t-d5c3e8c139769eedd18b3595692482edef186f54af8ce10c62c20975faedf00c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731163/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731163/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26731472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Kai</creatorcontrib><creatorcontrib>Olsen, Bjorn R</creatorcontrib><title>Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of osteoblast-derived VEGF in healing of a bone defect. The results indicate that osteoblast-derived VEGF plays critical roles at several stages in the repair process. Using transgenic mice with osteoblast-specific deletion of Vegfa, we demonstrated that VEGF promoted macrophage recruitment and angiogenic responses in the inflammation phase, and optimal levels of VEGF were required for coupling of angiogenesis and osteogenesis in areas where repair occurs by intramembranous ossification. VEGF likely functions as a paracrine factor in this process because deletion of Vegfr2 in osteoblastic lineage cells enhanced osteoblastic maturation and mineralization. Furthermore, osteoblast- and hypertrophic chondrocyte-derived VEGF stimulated recruitment of blood vessels and osteoclasts and promoted cartilage resorption at the repair site during the periosteal endochondral ossification stage. Finally, osteoblast-derived VEGF stimulated osteoclast formation in the final remodeling phase of the repair process. These findings provide a basis for clinical strategies to improve bone regeneration and treat defects in bone healing.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biomedical research</subject><subject>Bone regeneration</subject><subject>Bone Regeneration - physiology</subject><subject>Bones</subject><subject>Calcification, Physiologic - physiology</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Defects</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Laboratory animals</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mineralization</subject><subject>Neutrophils</subject><subject>Osteoblasts</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Osteogenesis - physiology</subject><subject>Osteoporosis</subject><subject>Studies</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk2LFDEQhoMo7uwo-AukQRAvrflO-iIsw37Jwl7Ua0gnlZksmc6YdC_sv7fH2R0_Tp4Kqh7eqnqrEHpD8EdCFP30ZXWtqdDiGVoQIXSrKdPP0QJjStpOMX2CTmu9w5hwLvhLdEKlYoQrukD9bR0h98nWsfVQ4j345vv55UVTYD0lO0Jt8pFofAwBCgxjtGPMQ2MH3_R5gCbksj2k_FTisD5kC-xsLK_Qi2BThdePcYm-XZx_XV21N7eX16uzm9YJTufuwjHQjrBOyQ7Ae6J7JjohO8o1BQ-BaBkEt0E7INhJ6ijulAgWfMDYsSX6fNDdTf0WvJvHLDaZXYlbWx5MttH8XRnixqzzveGzGUSyWeDDo0DJPyaoo9nG6iAlO0CeqiFKaqFVp_D_oJRxRX6h7_5B7_JUhtmJPSU06-h8oiV6f6DWNoHZgE3jpuY07T2t5oxzhiXGnfzd2ZVca4FwXJBgs38G8_QMM_r2T0OO4NP12U-B8a-I</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Hu, Kai</creator><creator>Olsen, Bjorn R</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>7T5</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20160201</creationdate><title>Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair</title><author>Hu, Kai ; Olsen, Bjorn R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-d5c3e8c139769eedd18b3595692482edef186f54af8ce10c62c20975faedf00c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biomedical research</topic><topic>Bone regeneration</topic><topic>Bone Regeneration - physiology</topic><topic>Bones</topic><topic>Calcification, Physiologic - physiology</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Defects</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Laboratory animals</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mineralization</topic><topic>Neutrophils</topic><topic>Osteoblasts</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Osteogenesis - physiology</topic><topic>Osteoporosis</topic><topic>Studies</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Kai</creatorcontrib><creatorcontrib>Olsen, Bjorn R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Kai</au><au>Olsen, Bjorn R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>126</volume><issue>2</issue><spage>509</spage><epage>526</epage><pages>509-526</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of osteoblast-derived VEGF in healing of a bone defect. The results indicate that osteoblast-derived VEGF plays critical roles at several stages in the repair process. Using transgenic mice with osteoblast-specific deletion of Vegfa, we demonstrated that VEGF promoted macrophage recruitment and angiogenic responses in the inflammation phase, and optimal levels of VEGF were required for coupling of angiogenesis and osteogenesis in areas where repair occurs by intramembranous ossification. VEGF likely functions as a paracrine factor in this process because deletion of Vegfr2 in osteoblastic lineage cells enhanced osteoblastic maturation and mineralization. Furthermore, osteoblast- and hypertrophic chondrocyte-derived VEGF stimulated recruitment of blood vessels and osteoclasts and promoted cartilage resorption at the repair site during the periosteal endochondral ossification stage. Finally, osteoblast-derived VEGF stimulated osteoclast formation in the final remodeling phase of the repair process. These findings provide a basis for clinical strategies to improve bone regeneration and treat defects in bone healing.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>26731472</pmid><doi>10.1172/JCI82585</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2016-02, Vol.126 (2), p.509-526
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4731163
source Journals@Ovid Ovid Autoload; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Angiogenesis
Animals
Biomedical research
Bone regeneration
Bone Regeneration - physiology
Bones
Calcification, Physiologic - physiology
Cell differentiation
Cell Differentiation - physiology
Defects
Genetic aspects
Health aspects
Laboratory animals
Mice
Mice, Knockout
Mineralization
Neutrophils
Osteoblasts
Osteoblasts - cytology
Osteoblasts - metabolism
Osteogenesis - physiology
Osteoporosis
Studies
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
title Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteoblast-derived%20VEGF%20regulates%20osteoblast%20differentiation%20and%20bone%20formation%20during%20bone%20repair&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Hu,%20Kai&rft.date=2016-02-01&rft.volume=126&rft.issue=2&rft.spage=509&rft.epage=526&rft.pages=509-526&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI82585&rft_dat=%3Cgale_pubme%3EA443060096%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765839297&rft_id=info:pmid/26731472&rft_galeid=A443060096&rfr_iscdi=true