Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair
Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of os...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2016-02, Vol.126 (2), p.509-526 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 526 |
---|---|
container_issue | 2 |
container_start_page | 509 |
container_title | The Journal of clinical investigation |
container_volume | 126 |
creator | Hu, Kai Olsen, Bjorn R |
description | Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of osteoblast-derived VEGF in healing of a bone defect. The results indicate that osteoblast-derived VEGF plays critical roles at several stages in the repair process. Using transgenic mice with osteoblast-specific deletion of Vegfa, we demonstrated that VEGF promoted macrophage recruitment and angiogenic responses in the inflammation phase, and optimal levels of VEGF were required for coupling of angiogenesis and osteogenesis in areas where repair occurs by intramembranous ossification. VEGF likely functions as a paracrine factor in this process because deletion of Vegfr2 in osteoblastic lineage cells enhanced osteoblastic maturation and mineralization. Furthermore, osteoblast- and hypertrophic chondrocyte-derived VEGF stimulated recruitment of blood vessels and osteoclasts and promoted cartilage resorption at the repair site during the periosteal endochondral ossification stage. Finally, osteoblast-derived VEGF stimulated osteoclast formation in the final remodeling phase of the repair process. These findings provide a basis for clinical strategies to improve bone regeneration and treat defects in bone healing. |
doi_str_mv | 10.1172/JCI82585 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4731163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A443060096</galeid><sourcerecordid>A443060096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-d5c3e8c139769eedd18b3595692482edef186f54af8ce10c62c20975faedf00c3</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhoMo7uwo-AukQRAvrflO-iIsw37Jwl7Ua0gnlZksmc6YdC_sv7fH2R0_Tp4Kqh7eqnqrEHpD8EdCFP30ZXWtqdDiGVoQIXSrKdPP0QJjStpOMX2CTmu9w5hwLvhLdEKlYoQrukD9bR0h98nWsfVQ4j345vv55UVTYD0lO0Jt8pFofAwBCgxjtGPMQ2MH3_R5gCbksj2k_FTisD5kC-xsLK_Qi2BThdePcYm-XZx_XV21N7eX16uzm9YJTufuwjHQjrBOyQ7Ae6J7JjohO8o1BQ-BaBkEt0E7INhJ6ijulAgWfMDYsSX6fNDdTf0WvJvHLDaZXYlbWx5MttH8XRnixqzzveGzGUSyWeDDo0DJPyaoo9nG6iAlO0CeqiFKaqFVp_D_oJRxRX6h7_5B7_JUhtmJPSU06-h8oiV6f6DWNoHZgE3jpuY07T2t5oxzhiXGnfzd2ZVca4FwXJBgs38G8_QMM_r2T0OO4NP12U-B8a-I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765839297</pqid></control><display><type>article</type><title>Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair</title><source>Journals@Ovid Ovid Autoload</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hu, Kai ; Olsen, Bjorn R</creator><creatorcontrib>Hu, Kai ; Olsen, Bjorn R</creatorcontrib><description>Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of osteoblast-derived VEGF in healing of a bone defect. The results indicate that osteoblast-derived VEGF plays critical roles at several stages in the repair process. Using transgenic mice with osteoblast-specific deletion of Vegfa, we demonstrated that VEGF promoted macrophage recruitment and angiogenic responses in the inflammation phase, and optimal levels of VEGF were required for coupling of angiogenesis and osteogenesis in areas where repair occurs by intramembranous ossification. VEGF likely functions as a paracrine factor in this process because deletion of Vegfr2 in osteoblastic lineage cells enhanced osteoblastic maturation and mineralization. Furthermore, osteoblast- and hypertrophic chondrocyte-derived VEGF stimulated recruitment of blood vessels and osteoclasts and promoted cartilage resorption at the repair site during the periosteal endochondral ossification stage. Finally, osteoblast-derived VEGF stimulated osteoclast formation in the final remodeling phase of the repair process. These findings provide a basis for clinical strategies to improve bone regeneration and treat defects in bone healing.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI82585</identifier><identifier>PMID: 26731472</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Angiogenesis ; Animals ; Biomedical research ; Bone regeneration ; Bone Regeneration - physiology ; Bones ; Calcification, Physiologic - physiology ; Cell differentiation ; Cell Differentiation - physiology ; Defects ; Genetic aspects ; Health aspects ; Laboratory animals ; Mice ; Mice, Knockout ; Mineralization ; Neutrophils ; Osteoblasts ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Osteogenesis - physiology ; Osteoporosis ; Studies ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>The Journal of clinical investigation, 2016-02, Vol.126 (2), p.509-526</ispartof><rights>COPYRIGHT 2016 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Feb 2016</rights><rights>Copyright © 2016, American Society for Clinical Investigation 2016 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-d5c3e8c139769eedd18b3595692482edef186f54af8ce10c62c20975faedf00c3</citedby><cites>FETCH-LOGICAL-c542t-d5c3e8c139769eedd18b3595692482edef186f54af8ce10c62c20975faedf00c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731163/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731163/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26731472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Kai</creatorcontrib><creatorcontrib>Olsen, Bjorn R</creatorcontrib><title>Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of osteoblast-derived VEGF in healing of a bone defect. The results indicate that osteoblast-derived VEGF plays critical roles at several stages in the repair process. Using transgenic mice with osteoblast-specific deletion of Vegfa, we demonstrated that VEGF promoted macrophage recruitment and angiogenic responses in the inflammation phase, and optimal levels of VEGF were required for coupling of angiogenesis and osteogenesis in areas where repair occurs by intramembranous ossification. VEGF likely functions as a paracrine factor in this process because deletion of Vegfr2 in osteoblastic lineage cells enhanced osteoblastic maturation and mineralization. Furthermore, osteoblast- and hypertrophic chondrocyte-derived VEGF stimulated recruitment of blood vessels and osteoclasts and promoted cartilage resorption at the repair site during the periosteal endochondral ossification stage. Finally, osteoblast-derived VEGF stimulated osteoclast formation in the final remodeling phase of the repair process. These findings provide a basis for clinical strategies to improve bone regeneration and treat defects in bone healing.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biomedical research</subject><subject>Bone regeneration</subject><subject>Bone Regeneration - physiology</subject><subject>Bones</subject><subject>Calcification, Physiologic - physiology</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Defects</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Laboratory animals</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mineralization</subject><subject>Neutrophils</subject><subject>Osteoblasts</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Osteogenesis - physiology</subject><subject>Osteoporosis</subject><subject>Studies</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk2LFDEQhoMo7uwo-AukQRAvrflO-iIsw37Jwl7Ua0gnlZksmc6YdC_sv7fH2R0_Tp4Kqh7eqnqrEHpD8EdCFP30ZXWtqdDiGVoQIXSrKdPP0QJjStpOMX2CTmu9w5hwLvhLdEKlYoQrukD9bR0h98nWsfVQ4j345vv55UVTYD0lO0Jt8pFofAwBCgxjtGPMQ2MH3_R5gCbksj2k_FTisD5kC-xsLK_Qi2BThdePcYm-XZx_XV21N7eX16uzm9YJTufuwjHQjrBOyQ7Ae6J7JjohO8o1BQ-BaBkEt0E7INhJ6ijulAgWfMDYsSX6fNDdTf0WvJvHLDaZXYlbWx5MttH8XRnixqzzveGzGUSyWeDDo0DJPyaoo9nG6iAlO0CeqiFKaqFVp_D_oJRxRX6h7_5B7_JUhtmJPSU06-h8oiV6f6DWNoHZgE3jpuY07T2t5oxzhiXGnfzd2ZVca4FwXJBgs38G8_QMM_r2T0OO4NP12U-B8a-I</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Hu, Kai</creator><creator>Olsen, Bjorn R</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>7T5</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20160201</creationdate><title>Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair</title><author>Hu, Kai ; Olsen, Bjorn R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-d5c3e8c139769eedd18b3595692482edef186f54af8ce10c62c20975faedf00c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biomedical research</topic><topic>Bone regeneration</topic><topic>Bone Regeneration - physiology</topic><topic>Bones</topic><topic>Calcification, Physiologic - physiology</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Defects</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Laboratory animals</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mineralization</topic><topic>Neutrophils</topic><topic>Osteoblasts</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Osteogenesis - physiology</topic><topic>Osteoporosis</topic><topic>Studies</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Kai</creatorcontrib><creatorcontrib>Olsen, Bjorn R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Kai</au><au>Olsen, Bjorn R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>126</volume><issue>2</issue><spage>509</spage><epage>526</epage><pages>509-526</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of osteoblast-derived VEGF in healing of a bone defect. The results indicate that osteoblast-derived VEGF plays critical roles at several stages in the repair process. Using transgenic mice with osteoblast-specific deletion of Vegfa, we demonstrated that VEGF promoted macrophage recruitment and angiogenic responses in the inflammation phase, and optimal levels of VEGF were required for coupling of angiogenesis and osteogenesis in areas where repair occurs by intramembranous ossification. VEGF likely functions as a paracrine factor in this process because deletion of Vegfr2 in osteoblastic lineage cells enhanced osteoblastic maturation and mineralization. Furthermore, osteoblast- and hypertrophic chondrocyte-derived VEGF stimulated recruitment of blood vessels and osteoclasts and promoted cartilage resorption at the repair site during the periosteal endochondral ossification stage. Finally, osteoblast-derived VEGF stimulated osteoclast formation in the final remodeling phase of the repair process. These findings provide a basis for clinical strategies to improve bone regeneration and treat defects in bone healing.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>26731472</pmid><doi>10.1172/JCI82585</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9738 |
ispartof | The Journal of clinical investigation, 2016-02, Vol.126 (2), p.509-526 |
issn | 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4731163 |
source | Journals@Ovid Ovid Autoload; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Angiogenesis Animals Biomedical research Bone regeneration Bone Regeneration - physiology Bones Calcification, Physiologic - physiology Cell differentiation Cell Differentiation - physiology Defects Genetic aspects Health aspects Laboratory animals Mice Mice, Knockout Mineralization Neutrophils Osteoblasts Osteoblasts - cytology Osteoblasts - metabolism Osteogenesis - physiology Osteoporosis Studies Vascular endothelial growth factor Vascular Endothelial Growth Factor A - genetics Vascular Endothelial Growth Factor A - metabolism |
title | Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteoblast-derived%20VEGF%20regulates%20osteoblast%20differentiation%20and%20bone%20formation%20during%20bone%20repair&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Hu,%20Kai&rft.date=2016-02-01&rft.volume=126&rft.issue=2&rft.spage=509&rft.epage=526&rft.pages=509-526&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI82585&rft_dat=%3Cgale_pubme%3EA443060096%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765839297&rft_id=info:pmid/26731472&rft_galeid=A443060096&rfr_iscdi=true |