Identification of AIM2 as a downstream target of JAK2V617F

The gain-of-function mutation JAK2V617F is frequently found in Philadelphia-chromosome-negative myeloproliferative neoplasm (MPN) patients. However, the tumorigenic properties of JAK2V617F have mostly been characterized in in vivo and in vitro murine models due to the lack of appropriate human cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental hematology & oncology 2016-01, Vol.5 (2), p.2-2, Article 2
Hauptverfasser: Liew, Ei Leen, Araki, Marito, Hironaka, Yumi, Mori, Seiichi, Tan, Tuan Zea, Morishita, Soji, Edahiro, Yoko, Ohsaka, Akimichi, Komatsu, Norio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2
container_issue 2
container_start_page 2
container_title Experimental hematology & oncology
container_volume 5
creator Liew, Ei Leen
Araki, Marito
Hironaka, Yumi
Mori, Seiichi
Tan, Tuan Zea
Morishita, Soji
Edahiro, Yoko
Ohsaka, Akimichi
Komatsu, Norio
description The gain-of-function mutation JAK2V617F is frequently found in Philadelphia-chromosome-negative myeloproliferative neoplasm (MPN) patients. However, the tumorigenic properties of JAK2V617F have mostly been characterized in in vivo and in vitro murine models due to the lack of appropriate human cell lines. Using the multipotent hematologic cell line UT-7/GM, we established D9, a novel human cell line that expresses JAK2V617F upon tetracycline addition. We assessed cellular differentiation in UT-7/GM cells when JAK2V617F was induced, and we used microarrays to analyze changes in mRNA expression caused by JAK2V617F. Using the human D9 cell line, we demonstrated that the induction of JAK2V617F leads to cytokine-independent cell growth with increased STAT activation and erythroid differentiation, mimicking the characteristics observed in polycythemia vera, making it a suitable in vitro model for studying this disorder. Interestingly, JAK2V617F-dependent erythroid cell differentiation was blocked when GM-CSF was added to the culture, suggesting that the GM-CSF pathway antagonizes JAK2V617F-induced erythroid cell differentiation. Our microarray analysis identified several genes involved in inflammasome activation, such as AIM2, IL1B, and CASP1, which were significantly up-regulated in JAK2V617F-induced cells. The observed inflammasome activation following JAK2V617F induction is consistent with a recent report demonstrating the involvement of IL1B in myelofibrosis development in a JAK2V617F model mouse. These results indicate that the D9 cell line should be useful for characterizing the signaling pathways downstream of JAK2V617F, allowing for the identification of effector molecules that contribute to the development of MPN.
doi_str_mv 10.1186/s40164-016-0032-7
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4730608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A447600373</galeid><sourcerecordid>A447600373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c762t-a2088e4193ef2639627f0c2df48b31af59ec2ae72fe30b33f68db9ff64afc5c43</originalsourceid><addsrcrecordid>eNp9UlFrFDEQDqLYUvsDfJEFQfqyNZPJJbs-CEdp9bTii_oactnJXcrupm52lf57s1ytdyImMBMy3zczyXyMPQd-DlCp10lyULLMpuQcRakfsWMBSpSooH68dz5ipynd8LyUUBXop-woe4F1jcfszaqhfgw-ODuG2BfRF8vVJ1HYVNiiiT_7NA5ku2K0w4bGOfxh-VF8U6CvnrEn3raJTu_9Cft6dfnl4n15_fnd6mJ5XTqtxFhawauKJNRIXiisldCeO9F4Wa0RrF_U5IQlLTwhXyN6VTXr2nslrXcLJ_GEvd3lvZ3WHTUu9zvY1twOobPDnYk2mMNIH7ZmE38YqZErXuUEZ_cJhvh9ojSaLiRHbWt7ilMyoBXMWJxrvfwLehOnoc_PMwJAaIGwqP-HAq1RctSw-IPa2JZM6H3M3bm5tFlKqVWemsaMOv8HKu-GuuBiTz7k-wPCqz3Clmw7blNsp3l86RAIO6AbYkoD-YcvA25mCZmdhEw2ZpaQ0ZnzYv-vHxi_BYO_ABcau54</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773403715</pqid></control><display><type>article</type><title>Identification of AIM2 as a downstream target of JAK2V617F</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liew, Ei Leen ; Araki, Marito ; Hironaka, Yumi ; Mori, Seiichi ; Tan, Tuan Zea ; Morishita, Soji ; Edahiro, Yoko ; Ohsaka, Akimichi ; Komatsu, Norio</creator><creatorcontrib>Liew, Ei Leen ; Araki, Marito ; Hironaka, Yumi ; Mori, Seiichi ; Tan, Tuan Zea ; Morishita, Soji ; Edahiro, Yoko ; Ohsaka, Akimichi ; Komatsu, Norio</creatorcontrib><description>The gain-of-function mutation JAK2V617F is frequently found in Philadelphia-chromosome-negative myeloproliferative neoplasm (MPN) patients. However, the tumorigenic properties of JAK2V617F have mostly been characterized in in vivo and in vitro murine models due to the lack of appropriate human cell lines. Using the multipotent hematologic cell line UT-7/GM, we established D9, a novel human cell line that expresses JAK2V617F upon tetracycline addition. We assessed cellular differentiation in UT-7/GM cells when JAK2V617F was induced, and we used microarrays to analyze changes in mRNA expression caused by JAK2V617F. Using the human D9 cell line, we demonstrated that the induction of JAK2V617F leads to cytokine-independent cell growth with increased STAT activation and erythroid differentiation, mimicking the characteristics observed in polycythemia vera, making it a suitable in vitro model for studying this disorder. Interestingly, JAK2V617F-dependent erythroid cell differentiation was blocked when GM-CSF was added to the culture, suggesting that the GM-CSF pathway antagonizes JAK2V617F-induced erythroid cell differentiation. Our microarray analysis identified several genes involved in inflammasome activation, such as AIM2, IL1B, and CASP1, which were significantly up-regulated in JAK2V617F-induced cells. The observed inflammasome activation following JAK2V617F induction is consistent with a recent report demonstrating the involvement of IL1B in myelofibrosis development in a JAK2V617F model mouse. These results indicate that the D9 cell line should be useful for characterizing the signaling pathways downstream of JAK2V617F, allowing for the identification of effector molecules that contribute to the development of MPN.</description><identifier>ISSN: 2162-3619</identifier><identifier>EISSN: 2162-3619</identifier><identifier>DOI: 10.1186/s40164-016-0032-7</identifier><identifier>PMID: 26823993</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Blood cancer ; Care and treatment ; Cell differentiation ; Cell growth ; Complications and side effects ; Cytokines ; DNA microarrays ; Gene expression ; Identification ; Kinases ; Leukemia ; Mutation ; Myeloproliferative disorders ; Stem cells ; Tumors</subject><ispartof>Experimental hematology &amp; oncology, 2016-01, Vol.5 (2), p.2-2, Article 2</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>Copyright © 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Liew et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c762t-a2088e4193ef2639627f0c2df48b31af59ec2ae72fe30b33f68db9ff64afc5c43</citedby><cites>FETCH-LOGICAL-c762t-a2088e4193ef2639627f0c2df48b31af59ec2ae72fe30b33f68db9ff64afc5c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730608/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730608/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26823993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liew, Ei Leen</creatorcontrib><creatorcontrib>Araki, Marito</creatorcontrib><creatorcontrib>Hironaka, Yumi</creatorcontrib><creatorcontrib>Mori, Seiichi</creatorcontrib><creatorcontrib>Tan, Tuan Zea</creatorcontrib><creatorcontrib>Morishita, Soji</creatorcontrib><creatorcontrib>Edahiro, Yoko</creatorcontrib><creatorcontrib>Ohsaka, Akimichi</creatorcontrib><creatorcontrib>Komatsu, Norio</creatorcontrib><title>Identification of AIM2 as a downstream target of JAK2V617F</title><title>Experimental hematology &amp; oncology</title><addtitle>Exp Hematol Oncol</addtitle><description>The gain-of-function mutation JAK2V617F is frequently found in Philadelphia-chromosome-negative myeloproliferative neoplasm (MPN) patients. However, the tumorigenic properties of JAK2V617F have mostly been characterized in in vivo and in vitro murine models due to the lack of appropriate human cell lines. Using the multipotent hematologic cell line UT-7/GM, we established D9, a novel human cell line that expresses JAK2V617F upon tetracycline addition. We assessed cellular differentiation in UT-7/GM cells when JAK2V617F was induced, and we used microarrays to analyze changes in mRNA expression caused by JAK2V617F. Using the human D9 cell line, we demonstrated that the induction of JAK2V617F leads to cytokine-independent cell growth with increased STAT activation and erythroid differentiation, mimicking the characteristics observed in polycythemia vera, making it a suitable in vitro model for studying this disorder. Interestingly, JAK2V617F-dependent erythroid cell differentiation was blocked when GM-CSF was added to the culture, suggesting that the GM-CSF pathway antagonizes JAK2V617F-induced erythroid cell differentiation. Our microarray analysis identified several genes involved in inflammasome activation, such as AIM2, IL1B, and CASP1, which were significantly up-regulated in JAK2V617F-induced cells. The observed inflammasome activation following JAK2V617F induction is consistent with a recent report demonstrating the involvement of IL1B in myelofibrosis development in a JAK2V617F model mouse. These results indicate that the D9 cell line should be useful for characterizing the signaling pathways downstream of JAK2V617F, allowing for the identification of effector molecules that contribute to the development of MPN.</description><subject>Analysis</subject><subject>Blood cancer</subject><subject>Care and treatment</subject><subject>Cell differentiation</subject><subject>Cell growth</subject><subject>Complications and side effects</subject><subject>Cytokines</subject><subject>DNA microarrays</subject><subject>Gene expression</subject><subject>Identification</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Mutation</subject><subject>Myeloproliferative disorders</subject><subject>Stem cells</subject><subject>Tumors</subject><issn>2162-3619</issn><issn>2162-3619</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UlFrFDEQDqLYUvsDfJEFQfqyNZPJJbs-CEdp9bTii_oactnJXcrupm52lf57s1ytdyImMBMy3zczyXyMPQd-DlCp10lyULLMpuQcRakfsWMBSpSooH68dz5ipynd8LyUUBXop-woe4F1jcfszaqhfgw-ODuG2BfRF8vVJ1HYVNiiiT_7NA5ku2K0w4bGOfxh-VF8U6CvnrEn3raJTu_9Cft6dfnl4n15_fnd6mJ5XTqtxFhawauKJNRIXiisldCeO9F4Wa0RrF_U5IQlLTwhXyN6VTXr2nslrXcLJ_GEvd3lvZ3WHTUu9zvY1twOobPDnYk2mMNIH7ZmE38YqZErXuUEZ_cJhvh9ojSaLiRHbWt7ilMyoBXMWJxrvfwLehOnoc_PMwJAaIGwqP-HAq1RctSw-IPa2JZM6H3M3bm5tFlKqVWemsaMOv8HKu-GuuBiTz7k-wPCqz3Clmw7blNsp3l86RAIO6AbYkoD-YcvA25mCZmdhEw2ZpaQ0ZnzYv-vHxi_BYO_ABcau54</recordid><startdate>20160128</startdate><enddate>20160128</enddate><creator>Liew, Ei Leen</creator><creator>Araki, Marito</creator><creator>Hironaka, Yumi</creator><creator>Mori, Seiichi</creator><creator>Tan, Tuan Zea</creator><creator>Morishita, Soji</creator><creator>Edahiro, Yoko</creator><creator>Ohsaka, Akimichi</creator><creator>Komatsu, Norio</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160128</creationdate><title>Identification of AIM2 as a downstream target of JAK2V617F</title><author>Liew, Ei Leen ; Araki, Marito ; Hironaka, Yumi ; Mori, Seiichi ; Tan, Tuan Zea ; Morishita, Soji ; Edahiro, Yoko ; Ohsaka, Akimichi ; Komatsu, Norio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c762t-a2088e4193ef2639627f0c2df48b31af59ec2ae72fe30b33f68db9ff64afc5c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Blood cancer</topic><topic>Care and treatment</topic><topic>Cell differentiation</topic><topic>Cell growth</topic><topic>Complications and side effects</topic><topic>Cytokines</topic><topic>DNA microarrays</topic><topic>Gene expression</topic><topic>Identification</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Mutation</topic><topic>Myeloproliferative disorders</topic><topic>Stem cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liew, Ei Leen</creatorcontrib><creatorcontrib>Araki, Marito</creatorcontrib><creatorcontrib>Hironaka, Yumi</creatorcontrib><creatorcontrib>Mori, Seiichi</creatorcontrib><creatorcontrib>Tan, Tuan Zea</creatorcontrib><creatorcontrib>Morishita, Soji</creatorcontrib><creatorcontrib>Edahiro, Yoko</creatorcontrib><creatorcontrib>Ohsaka, Akimichi</creatorcontrib><creatorcontrib>Komatsu, Norio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental hematology &amp; oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liew, Ei Leen</au><au>Araki, Marito</au><au>Hironaka, Yumi</au><au>Mori, Seiichi</au><au>Tan, Tuan Zea</au><au>Morishita, Soji</au><au>Edahiro, Yoko</au><au>Ohsaka, Akimichi</au><au>Komatsu, Norio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of AIM2 as a downstream target of JAK2V617F</atitle><jtitle>Experimental hematology &amp; oncology</jtitle><addtitle>Exp Hematol Oncol</addtitle><date>2016-01-28</date><risdate>2016</risdate><volume>5</volume><issue>2</issue><spage>2</spage><epage>2</epage><pages>2-2</pages><artnum>2</artnum><issn>2162-3619</issn><eissn>2162-3619</eissn><abstract>The gain-of-function mutation JAK2V617F is frequently found in Philadelphia-chromosome-negative myeloproliferative neoplasm (MPN) patients. However, the tumorigenic properties of JAK2V617F have mostly been characterized in in vivo and in vitro murine models due to the lack of appropriate human cell lines. Using the multipotent hematologic cell line UT-7/GM, we established D9, a novel human cell line that expresses JAK2V617F upon tetracycline addition. We assessed cellular differentiation in UT-7/GM cells when JAK2V617F was induced, and we used microarrays to analyze changes in mRNA expression caused by JAK2V617F. Using the human D9 cell line, we demonstrated that the induction of JAK2V617F leads to cytokine-independent cell growth with increased STAT activation and erythroid differentiation, mimicking the characteristics observed in polycythemia vera, making it a suitable in vitro model for studying this disorder. Interestingly, JAK2V617F-dependent erythroid cell differentiation was blocked when GM-CSF was added to the culture, suggesting that the GM-CSF pathway antagonizes JAK2V617F-induced erythroid cell differentiation. Our microarray analysis identified several genes involved in inflammasome activation, such as AIM2, IL1B, and CASP1, which were significantly up-regulated in JAK2V617F-induced cells. The observed inflammasome activation following JAK2V617F induction is consistent with a recent report demonstrating the involvement of IL1B in myelofibrosis development in a JAK2V617F model mouse. These results indicate that the D9 cell line should be useful for characterizing the signaling pathways downstream of JAK2V617F, allowing for the identification of effector molecules that contribute to the development of MPN.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>26823993</pmid><doi>10.1186/s40164-016-0032-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2162-3619
ispartof Experimental hematology & oncology, 2016-01, Vol.5 (2), p.2-2, Article 2
issn 2162-3619
2162-3619
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4730608
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Analysis
Blood cancer
Care and treatment
Cell differentiation
Cell growth
Complications and side effects
Cytokines
DNA microarrays
Gene expression
Identification
Kinases
Leukemia
Mutation
Myeloproliferative disorders
Stem cells
Tumors
title Identification of AIM2 as a downstream target of JAK2V617F
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20AIM2%20as%20a%20downstream%20target%20of%20JAK2V617F&rft.jtitle=Experimental%20hematology%20&%20oncology&rft.au=Liew,%20Ei%20Leen&rft.date=2016-01-28&rft.volume=5&rft.issue=2&rft.spage=2&rft.epage=2&rft.pages=2-2&rft.artnum=2&rft.issn=2162-3619&rft.eissn=2162-3619&rft_id=info:doi/10.1186/s40164-016-0032-7&rft_dat=%3Cgale_pubme%3EA447600373%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773403715&rft_id=info:pmid/26823993&rft_galeid=A447600373&rfr_iscdi=true