Massively parallel cis-regulatory analysis in the mammalian central nervous system

Cis-regulatory elements (CREs, e.g., promoters and enhancers) regulate gene expression, and variants within CREs can modulate disease risk. Next-generation sequencing has enabled the rapid generation of genomic data that predict the locations of CREs, but a bottleneck lies in functionally interpreti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome research 2016-02, Vol.26 (2), p.238-255
Hauptverfasser: Shen, Susan Q, Myers, Connie A, Hughes, Andrew E O, Byrne, Leah C, Flannery, John G, Corbo, Joseph C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 2
container_start_page 238
container_title Genome research
container_volume 26
creator Shen, Susan Q
Myers, Connie A
Hughes, Andrew E O
Byrne, Leah C
Flannery, John G
Corbo, Joseph C
description Cis-regulatory elements (CREs, e.g., promoters and enhancers) regulate gene expression, and variants within CREs can modulate disease risk. Next-generation sequencing has enabled the rapid generation of genomic data that predict the locations of CREs, but a bottleneck lies in functionally interpreting these data. To address this issue, massively parallel reporter assays (MPRAs) have emerged, in which barcoded reporter libraries are introduced into cells, and the resulting barcoded transcripts are quantified by next-generation sequencing. Thus far, MPRAs have been largely restricted to assaying short CREs in a limited repertoire of cultured cell types. Here, we present two advances that extend the biological relevance and applicability of MPRAs. First, we adapt exome capture technology to instead capture candidate CREs, thereby tiling across the targeted regions and markedly increasing the length of CREs that can be readily assayed. Second, we package the library into adeno-associated virus (AAV), thereby allowing delivery to target organs in vivo. As a proof of concept, we introduce a capture library of about 46,000 constructs, corresponding to roughly 3500 DNase I hypersensitive (DHS) sites, into the mouse retina by ex vivo plasmid electroporation and into the mouse cerebral cortex by in vivo AAV injection. We demonstrate tissue-specific cis-regulatory activity of DHSs and provide examples of high-resolution truncation mutation analysis for multiplex parsing of CREs. Our approach should enable massively parallel functional analysis of a wide range of CREs in any organ or species that can be infected by AAV, such as nonhuman primates and human stem cell-derived organoids.
doi_str_mv 10.1101/gr.193789.115
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4728376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1780522948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-2c530759ce0fd9fef4dc0c21bacbd09fe66356c4acdc286680fe3451ea695e143</originalsourceid><addsrcrecordid>eNqNkc1LAzEQxYMoWqtHr5Kjl63JbpJNLoIUv6AiiJ5Dmp1tI9ndmmwL-9-b0ip68zSZyW8eb3gIXVAyoZTQ60WYUFWUUqWWH6AR5UxlnAl1mN5EykwRTk_QaYwfhJCCSXmMTnLBSyEoG6HXZxOj24Af8MoE4z14bF3MAizW3vRdGLBpjR-ii9i1uF8CbkzTGO9Miy20fdrBLYRNt444DrGH5gwd1cZHON_XMXq_v3ubPmazl4en6e0ss0yKPsstL0jJlQVSV6qGmlWW2JzOjZ1XJA2EKLiwzNjK5lIISWooGKdghOJAWTFGNzvd1XreQLU3o1fBNSYMujNO__1p3VIvuo1mZS6LUiSBq71A6D7XEHvduGjBe9NCOkfTUhKe54rJf6AiT-YE4QnNdqgNXYwB6h9HlOhtZHoR9C6y1G75y99n_NDfGRVfXVeUhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762345605</pqid></control><display><type>article</type><title>Massively parallel cis-regulatory analysis in the mammalian central nervous system</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Shen, Susan Q ; Myers, Connie A ; Hughes, Andrew E O ; Byrne, Leah C ; Flannery, John G ; Corbo, Joseph C</creator><creatorcontrib>Shen, Susan Q ; Myers, Connie A ; Hughes, Andrew E O ; Byrne, Leah C ; Flannery, John G ; Corbo, Joseph C</creatorcontrib><description>Cis-regulatory elements (CREs, e.g., promoters and enhancers) regulate gene expression, and variants within CREs can modulate disease risk. Next-generation sequencing has enabled the rapid generation of genomic data that predict the locations of CREs, but a bottleneck lies in functionally interpreting these data. To address this issue, massively parallel reporter assays (MPRAs) have emerged, in which barcoded reporter libraries are introduced into cells, and the resulting barcoded transcripts are quantified by next-generation sequencing. Thus far, MPRAs have been largely restricted to assaying short CREs in a limited repertoire of cultured cell types. Here, we present two advances that extend the biological relevance and applicability of MPRAs. First, we adapt exome capture technology to instead capture candidate CREs, thereby tiling across the targeted regions and markedly increasing the length of CREs that can be readily assayed. Second, we package the library into adeno-associated virus (AAV), thereby allowing delivery to target organs in vivo. As a proof of concept, we introduce a capture library of about 46,000 constructs, corresponding to roughly 3500 DNase I hypersensitive (DHS) sites, into the mouse retina by ex vivo plasmid electroporation and into the mouse cerebral cortex by in vivo AAV injection. We demonstrate tissue-specific cis-regulatory activity of DHSs and provide examples of high-resolution truncation mutation analysis for multiplex parsing of CREs. Our approach should enable massively parallel functional analysis of a wide range of CREs in any organ or species that can be infected by AAV, such as nonhuman primates and human stem cell-derived organoids.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.193789.115</identifier><identifier>PMID: 26576614</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Adeno-associated virus ; Animals ; Base Sequence ; Cerebral Cortex - metabolism ; Dependovirus - genetics ; DNA Mutational Analysis ; Epigenesis, Genetic ; Female ; Gene Library ; Genetic Loci ; Genetic Vectors ; Method ; Mice, Inbred C57BL ; Organ Specificity ; Promoter Regions, Genetic ; Retina - metabolism ; Transduction, Genetic</subject><ispartof>Genome research, 2016-02, Vol.26 (2), p.238-255</ispartof><rights>2016 Shen et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-2c530759ce0fd9fef4dc0c21bacbd09fe66356c4acdc286680fe3451ea695e143</citedby><cites>FETCH-LOGICAL-c486t-2c530759ce0fd9fef4dc0c21bacbd09fe66356c4acdc286680fe3451ea695e143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728376/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728376/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26576614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Susan Q</creatorcontrib><creatorcontrib>Myers, Connie A</creatorcontrib><creatorcontrib>Hughes, Andrew E O</creatorcontrib><creatorcontrib>Byrne, Leah C</creatorcontrib><creatorcontrib>Flannery, John G</creatorcontrib><creatorcontrib>Corbo, Joseph C</creatorcontrib><title>Massively parallel cis-regulatory analysis in the mammalian central nervous system</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>Cis-regulatory elements (CREs, e.g., promoters and enhancers) regulate gene expression, and variants within CREs can modulate disease risk. Next-generation sequencing has enabled the rapid generation of genomic data that predict the locations of CREs, but a bottleneck lies in functionally interpreting these data. To address this issue, massively parallel reporter assays (MPRAs) have emerged, in which barcoded reporter libraries are introduced into cells, and the resulting barcoded transcripts are quantified by next-generation sequencing. Thus far, MPRAs have been largely restricted to assaying short CREs in a limited repertoire of cultured cell types. Here, we present two advances that extend the biological relevance and applicability of MPRAs. First, we adapt exome capture technology to instead capture candidate CREs, thereby tiling across the targeted regions and markedly increasing the length of CREs that can be readily assayed. Second, we package the library into adeno-associated virus (AAV), thereby allowing delivery to target organs in vivo. As a proof of concept, we introduce a capture library of about 46,000 constructs, corresponding to roughly 3500 DNase I hypersensitive (DHS) sites, into the mouse retina by ex vivo plasmid electroporation and into the mouse cerebral cortex by in vivo AAV injection. We demonstrate tissue-specific cis-regulatory activity of DHSs and provide examples of high-resolution truncation mutation analysis for multiplex parsing of CREs. Our approach should enable massively parallel functional analysis of a wide range of CREs in any organ or species that can be infected by AAV, such as nonhuman primates and human stem cell-derived organoids.</description><subject>Adeno-associated virus</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Cerebral Cortex - metabolism</subject><subject>Dependovirus - genetics</subject><subject>DNA Mutational Analysis</subject><subject>Epigenesis, Genetic</subject><subject>Female</subject><subject>Gene Library</subject><subject>Genetic Loci</subject><subject>Genetic Vectors</subject><subject>Method</subject><subject>Mice, Inbred C57BL</subject><subject>Organ Specificity</subject><subject>Promoter Regions, Genetic</subject><subject>Retina - metabolism</subject><subject>Transduction, Genetic</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1LAzEQxYMoWqtHr5Kjl63JbpJNLoIUv6AiiJ5Dmp1tI9ndmmwL-9-b0ip68zSZyW8eb3gIXVAyoZTQ60WYUFWUUqWWH6AR5UxlnAl1mN5EykwRTk_QaYwfhJCCSXmMTnLBSyEoG6HXZxOj24Af8MoE4z14bF3MAizW3vRdGLBpjR-ii9i1uF8CbkzTGO9Miy20fdrBLYRNt444DrGH5gwd1cZHON_XMXq_v3ubPmazl4en6e0ss0yKPsstL0jJlQVSV6qGmlWW2JzOjZ1XJA2EKLiwzNjK5lIISWooGKdghOJAWTFGNzvd1XreQLU3o1fBNSYMujNO__1p3VIvuo1mZS6LUiSBq71A6D7XEHvduGjBe9NCOkfTUhKe54rJf6AiT-YE4QnNdqgNXYwB6h9HlOhtZHoR9C6y1G75y99n_NDfGRVfXVeUhg</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Shen, Susan Q</creator><creator>Myers, Connie A</creator><creator>Hughes, Andrew E O</creator><creator>Byrne, Leah C</creator><creator>Flannery, John G</creator><creator>Corbo, Joseph C</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20160201</creationdate><title>Massively parallel cis-regulatory analysis in the mammalian central nervous system</title><author>Shen, Susan Q ; Myers, Connie A ; Hughes, Andrew E O ; Byrne, Leah C ; Flannery, John G ; Corbo, Joseph C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-2c530759ce0fd9fef4dc0c21bacbd09fe66356c4acdc286680fe3451ea695e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adeno-associated virus</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Cerebral Cortex - metabolism</topic><topic>Dependovirus - genetics</topic><topic>DNA Mutational Analysis</topic><topic>Epigenesis, Genetic</topic><topic>Female</topic><topic>Gene Library</topic><topic>Genetic Loci</topic><topic>Genetic Vectors</topic><topic>Method</topic><topic>Mice, Inbred C57BL</topic><topic>Organ Specificity</topic><topic>Promoter Regions, Genetic</topic><topic>Retina - metabolism</topic><topic>Transduction, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Susan Q</creatorcontrib><creatorcontrib>Myers, Connie A</creatorcontrib><creatorcontrib>Hughes, Andrew E O</creatorcontrib><creatorcontrib>Byrne, Leah C</creatorcontrib><creatorcontrib>Flannery, John G</creatorcontrib><creatorcontrib>Corbo, Joseph C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Susan Q</au><au>Myers, Connie A</au><au>Hughes, Andrew E O</au><au>Byrne, Leah C</au><au>Flannery, John G</au><au>Corbo, Joseph C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massively parallel cis-regulatory analysis in the mammalian central nervous system</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>26</volume><issue>2</issue><spage>238</spage><epage>255</epage><pages>238-255</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>Cis-regulatory elements (CREs, e.g., promoters and enhancers) regulate gene expression, and variants within CREs can modulate disease risk. Next-generation sequencing has enabled the rapid generation of genomic data that predict the locations of CREs, but a bottleneck lies in functionally interpreting these data. To address this issue, massively parallel reporter assays (MPRAs) have emerged, in which barcoded reporter libraries are introduced into cells, and the resulting barcoded transcripts are quantified by next-generation sequencing. Thus far, MPRAs have been largely restricted to assaying short CREs in a limited repertoire of cultured cell types. Here, we present two advances that extend the biological relevance and applicability of MPRAs. First, we adapt exome capture technology to instead capture candidate CREs, thereby tiling across the targeted regions and markedly increasing the length of CREs that can be readily assayed. Second, we package the library into adeno-associated virus (AAV), thereby allowing delivery to target organs in vivo. As a proof of concept, we introduce a capture library of about 46,000 constructs, corresponding to roughly 3500 DNase I hypersensitive (DHS) sites, into the mouse retina by ex vivo plasmid electroporation and into the mouse cerebral cortex by in vivo AAV injection. We demonstrate tissue-specific cis-regulatory activity of DHSs and provide examples of high-resolution truncation mutation analysis for multiplex parsing of CREs. Our approach should enable massively parallel functional analysis of a wide range of CREs in any organ or species that can be infected by AAV, such as nonhuman primates and human stem cell-derived organoids.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>26576614</pmid><doi>10.1101/gr.193789.115</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-9051
ispartof Genome research, 2016-02, Vol.26 (2), p.238-255
issn 1088-9051
1549-5469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4728376
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Adeno-associated virus
Animals
Base Sequence
Cerebral Cortex - metabolism
Dependovirus - genetics
DNA Mutational Analysis
Epigenesis, Genetic
Female
Gene Library
Genetic Loci
Genetic Vectors
Method
Mice, Inbred C57BL
Organ Specificity
Promoter Regions, Genetic
Retina - metabolism
Transduction, Genetic
title Massively parallel cis-regulatory analysis in the mammalian central nervous system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massively%20parallel%20cis-regulatory%20analysis%20in%20the%20mammalian%20central%20nervous%20system&rft.jtitle=Genome%20research&rft.au=Shen,%20Susan%20Q&rft.date=2016-02-01&rft.volume=26&rft.issue=2&rft.spage=238&rft.epage=255&rft.pages=238-255&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.193789.115&rft_dat=%3Cproquest_pubme%3E1780522948%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762345605&rft_id=info:pmid/26576614&rfr_iscdi=true