Semantic interrogation of a multi knowledge domain ontological model of tendinopathy identifies four strong candidate risk genes

Tendinopathy is a multifactorial syndrome characterised by tendon pain and thickening and impaired performance during activity. Candidate gene association studies have identified genetic factors that contribute to intrinsic risk of developing tendinopathy upon exposure to extrinsic factors. Bioinfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-01, Vol.6 (1), p.19820-19820, Article 19820
Hauptverfasser: Saunders, Colleen J., Jalali Sefid Dashti, Mahjoubeh, Gamieldien, Junaid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19820
container_issue 1
container_start_page 19820
container_title Scientific reports
container_volume 6
creator Saunders, Colleen J.
Jalali Sefid Dashti, Mahjoubeh
Gamieldien, Junaid
description Tendinopathy is a multifactorial syndrome characterised by tendon pain and thickening and impaired performance during activity. Candidate gene association studies have identified genetic factors that contribute to intrinsic risk of developing tendinopathy upon exposure to extrinsic factors. Bioinformatics approaches that data-mine existing knowledge for biological relationships may assist with the identification of candidate genes. The aim of this study was to data-mine functional annotation of human genes and identify candidate genes by ontology-seeded queries capturing the features of tendinopathy. Our BioOntological Relationship Graph database (BORG) integrates multiple sources of genomic and biomedical knowledge into an on-disk semantic network where human genes and their orthologs in mouse and rat are central concepts mapped to ontology terms. The BORG was used to screen all human genes for potential links to tendinopathy. Following further prioritisation, four strong candidate genes ( COL11A2 , ELN , ITGB3 , LOX ) were identified. These genes are differentially expressed in tendinopathy, functionally linked to features of tendinopathy and previously implicated in other connective tissue diseases. In conclusion, cross-domain semantic integration of multiple sources of biomedical knowledge and interrogation of phenotypes and gene functions associated with disease, may significantly increase the probability of identifying strong and unobvious candidate genes in genetic association studies.
doi_str_mv 10.1038/srep19820
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4726433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899046901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-9d0388a4895b0204392536f28ee98a16937f5581bee9e31e41bf817aabafeae93</originalsourceid><addsrcrecordid>eNplkU9rFTEUxYMottQu_AIScKPC0_ybmWQjlGJVKLhQ1-HOzJ1p2kzyTDJKd370prz6eGo2Sbg_Ts7JIeQ5Z285k_pdTrjlRgv2iBwLppqNkEI8PjgfkdOcr1ldjTCKm6fkSLSaKdN1x-T3V1wgFDdQFwqmFGcoLgYaJwp0WX1x9CbEXx7HGekYF3B1Fkr0cXYDeLrEEf09XTCMLsQtlKtb6kasmpPDTKe4JppLimGmA1RmhII0uXxDZwyYn5EnE_iMpw_7Cfl-8eHb-afN5ZePn8_PLjeDkrpszFizalDaND2r0aQRjWwnoRGNBt4a2U1No3lf7yg5Kt5PmncAPUwIaOQJeb_T3a79guNQDSbwdpvcAunWRnD270lwV3aOP63qRKukrAKvHgRS_LFiLnZxeUDvIWBcs-Vdy7QxnVQVffkPel1_IdR4lleEqdYwXqnXO2pIMdcWp70Zzux9tXZfbWVfHLrfk3-KrMCbHZDrKMyYDp78T-0O-jGwuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899046901</pqid></control><display><type>article</type><title>Semantic interrogation of a multi knowledge domain ontological model of tendinopathy identifies four strong candidate risk genes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Saunders, Colleen J. ; Jalali Sefid Dashti, Mahjoubeh ; Gamieldien, Junaid</creator><creatorcontrib>Saunders, Colleen J. ; Jalali Sefid Dashti, Mahjoubeh ; Gamieldien, Junaid</creatorcontrib><description>Tendinopathy is a multifactorial syndrome characterised by tendon pain and thickening and impaired performance during activity. Candidate gene association studies have identified genetic factors that contribute to intrinsic risk of developing tendinopathy upon exposure to extrinsic factors. Bioinformatics approaches that data-mine existing knowledge for biological relationships may assist with the identification of candidate genes. The aim of this study was to data-mine functional annotation of human genes and identify candidate genes by ontology-seeded queries capturing the features of tendinopathy. Our BioOntological Relationship Graph database (BORG) integrates multiple sources of genomic and biomedical knowledge into an on-disk semantic network where human genes and their orthologs in mouse and rat are central concepts mapped to ontology terms. The BORG was used to screen all human genes for potential links to tendinopathy. Following further prioritisation, four strong candidate genes ( COL11A2 , ELN , ITGB3 , LOX ) were identified. These genes are differentially expressed in tendinopathy, functionally linked to features of tendinopathy and previously implicated in other connective tissue diseases. In conclusion, cross-domain semantic integration of multiple sources of biomedical knowledge and interrogation of phenotypes and gene functions associated with disease, may significantly increase the probability of identifying strong and unobvious candidate genes in genetic association studies.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep19820</identifier><identifier>PMID: 26804977</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2164 ; 631/114/2403 ; 631/208/205 ; 692/4023/1671/1835 ; 692/53/2423 ; Animals ; Bioinformatics ; Collagen Type XI - genetics ; Computational Biology - methods ; Connective tissue diseases ; Data mining ; Databases, Factual ; Genes ; Genetic Association Studies ; Genetic factors ; Genetic Predisposition to Disease ; Genome, Human ; Humanities and Social Sciences ; Humans ; Integration ; Integrin beta3 - genetics ; Mice ; Molecular Sequence Annotation ; multidisciplinary ; Ontology ; Pain ; Questioning ; Rats ; Scavenger Receptors, Class E - genetics ; Science ; Semantics ; Tendinopathy - genetics ; Tendinopathy - metabolism ; Tendinopathy - pathology ; Tendons - metabolism ; Tendons - pathology</subject><ispartof>Scientific reports, 2016-01, Vol.6 (1), p.19820-19820, Article 19820</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-9d0388a4895b0204392536f28ee98a16937f5581bee9e31e41bf817aabafeae93</citedby><cites>FETCH-LOGICAL-c438t-9d0388a4895b0204392536f28ee98a16937f5581bee9e31e41bf817aabafeae93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726433/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726433/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,41103,42172,51559,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26804977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saunders, Colleen J.</creatorcontrib><creatorcontrib>Jalali Sefid Dashti, Mahjoubeh</creatorcontrib><creatorcontrib>Gamieldien, Junaid</creatorcontrib><title>Semantic interrogation of a multi knowledge domain ontological model of tendinopathy identifies four strong candidate risk genes</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Tendinopathy is a multifactorial syndrome characterised by tendon pain and thickening and impaired performance during activity. Candidate gene association studies have identified genetic factors that contribute to intrinsic risk of developing tendinopathy upon exposure to extrinsic factors. Bioinformatics approaches that data-mine existing knowledge for biological relationships may assist with the identification of candidate genes. The aim of this study was to data-mine functional annotation of human genes and identify candidate genes by ontology-seeded queries capturing the features of tendinopathy. Our BioOntological Relationship Graph database (BORG) integrates multiple sources of genomic and biomedical knowledge into an on-disk semantic network where human genes and their orthologs in mouse and rat are central concepts mapped to ontology terms. The BORG was used to screen all human genes for potential links to tendinopathy. Following further prioritisation, four strong candidate genes ( COL11A2 , ELN , ITGB3 , LOX ) were identified. These genes are differentially expressed in tendinopathy, functionally linked to features of tendinopathy and previously implicated in other connective tissue diseases. In conclusion, cross-domain semantic integration of multiple sources of biomedical knowledge and interrogation of phenotypes and gene functions associated with disease, may significantly increase the probability of identifying strong and unobvious candidate genes in genetic association studies.</description><subject>631/114/2164</subject><subject>631/114/2403</subject><subject>631/208/205</subject><subject>692/4023/1671/1835</subject><subject>692/53/2423</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Collagen Type XI - genetics</subject><subject>Computational Biology - methods</subject><subject>Connective tissue diseases</subject><subject>Data mining</subject><subject>Databases, Factual</subject><subject>Genes</subject><subject>Genetic Association Studies</subject><subject>Genetic factors</subject><subject>Genetic Predisposition to Disease</subject><subject>Genome, Human</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Integration</subject><subject>Integrin beta3 - genetics</subject><subject>Mice</subject><subject>Molecular Sequence Annotation</subject><subject>multidisciplinary</subject><subject>Ontology</subject><subject>Pain</subject><subject>Questioning</subject><subject>Rats</subject><subject>Scavenger Receptors, Class E - genetics</subject><subject>Science</subject><subject>Semantics</subject><subject>Tendinopathy - genetics</subject><subject>Tendinopathy - metabolism</subject><subject>Tendinopathy - pathology</subject><subject>Tendons - metabolism</subject><subject>Tendons - pathology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU9rFTEUxYMottQu_AIScKPC0_ybmWQjlGJVKLhQ1-HOzJ1p2kzyTDJKd370prz6eGo2Sbg_Ts7JIeQ5Z285k_pdTrjlRgv2iBwLppqNkEI8PjgfkdOcr1ldjTCKm6fkSLSaKdN1x-T3V1wgFDdQFwqmFGcoLgYaJwp0WX1x9CbEXx7HGekYF3B1Fkr0cXYDeLrEEf09XTCMLsQtlKtb6kasmpPDTKe4JppLimGmA1RmhII0uXxDZwyYn5EnE_iMpw_7Cfl-8eHb-afN5ZePn8_PLjeDkrpszFizalDaND2r0aQRjWwnoRGNBt4a2U1No3lf7yg5Kt5PmncAPUwIaOQJeb_T3a79guNQDSbwdpvcAunWRnD270lwV3aOP63qRKukrAKvHgRS_LFiLnZxeUDvIWBcs-Vdy7QxnVQVffkPel1_IdR4lleEqdYwXqnXO2pIMdcWp70Zzux9tXZfbWVfHLrfk3-KrMCbHZDrKMyYDp78T-0O-jGwuw</recordid><startdate>20160125</startdate><enddate>20160125</enddate><creator>Saunders, Colleen J.</creator><creator>Jalali Sefid Dashti, Mahjoubeh</creator><creator>Gamieldien, Junaid</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160125</creationdate><title>Semantic interrogation of a multi knowledge domain ontological model of tendinopathy identifies four strong candidate risk genes</title><author>Saunders, Colleen J. ; Jalali Sefid Dashti, Mahjoubeh ; Gamieldien, Junaid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-9d0388a4895b0204392536f28ee98a16937f5581bee9e31e41bf817aabafeae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/114/2164</topic><topic>631/114/2403</topic><topic>631/208/205</topic><topic>692/4023/1671/1835</topic><topic>692/53/2423</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Collagen Type XI - genetics</topic><topic>Computational Biology - methods</topic><topic>Connective tissue diseases</topic><topic>Data mining</topic><topic>Databases, Factual</topic><topic>Genes</topic><topic>Genetic Association Studies</topic><topic>Genetic factors</topic><topic>Genetic Predisposition to Disease</topic><topic>Genome, Human</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Integration</topic><topic>Integrin beta3 - genetics</topic><topic>Mice</topic><topic>Molecular Sequence Annotation</topic><topic>multidisciplinary</topic><topic>Ontology</topic><topic>Pain</topic><topic>Questioning</topic><topic>Rats</topic><topic>Scavenger Receptors, Class E - genetics</topic><topic>Science</topic><topic>Semantics</topic><topic>Tendinopathy - genetics</topic><topic>Tendinopathy - metabolism</topic><topic>Tendinopathy - pathology</topic><topic>Tendons - metabolism</topic><topic>Tendons - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saunders, Colleen J.</creatorcontrib><creatorcontrib>Jalali Sefid Dashti, Mahjoubeh</creatorcontrib><creatorcontrib>Gamieldien, Junaid</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saunders, Colleen J.</au><au>Jalali Sefid Dashti, Mahjoubeh</au><au>Gamieldien, Junaid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic interrogation of a multi knowledge domain ontological model of tendinopathy identifies four strong candidate risk genes</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-01-25</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>19820</spage><epage>19820</epage><pages>19820-19820</pages><artnum>19820</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Tendinopathy is a multifactorial syndrome characterised by tendon pain and thickening and impaired performance during activity. Candidate gene association studies have identified genetic factors that contribute to intrinsic risk of developing tendinopathy upon exposure to extrinsic factors. Bioinformatics approaches that data-mine existing knowledge for biological relationships may assist with the identification of candidate genes. The aim of this study was to data-mine functional annotation of human genes and identify candidate genes by ontology-seeded queries capturing the features of tendinopathy. Our BioOntological Relationship Graph database (BORG) integrates multiple sources of genomic and biomedical knowledge into an on-disk semantic network where human genes and their orthologs in mouse and rat are central concepts mapped to ontology terms. The BORG was used to screen all human genes for potential links to tendinopathy. Following further prioritisation, four strong candidate genes ( COL11A2 , ELN , ITGB3 , LOX ) were identified. These genes are differentially expressed in tendinopathy, functionally linked to features of tendinopathy and previously implicated in other connective tissue diseases. In conclusion, cross-domain semantic integration of multiple sources of biomedical knowledge and interrogation of phenotypes and gene functions associated with disease, may significantly increase the probability of identifying strong and unobvious candidate genes in genetic association studies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26804977</pmid><doi>10.1038/srep19820</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-01, Vol.6 (1), p.19820-19820, Article 19820
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4726433
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 631/114/2164
631/114/2403
631/208/205
692/4023/1671/1835
692/53/2423
Animals
Bioinformatics
Collagen Type XI - genetics
Computational Biology - methods
Connective tissue diseases
Data mining
Databases, Factual
Genes
Genetic Association Studies
Genetic factors
Genetic Predisposition to Disease
Genome, Human
Humanities and Social Sciences
Humans
Integration
Integrin beta3 - genetics
Mice
Molecular Sequence Annotation
multidisciplinary
Ontology
Pain
Questioning
Rats
Scavenger Receptors, Class E - genetics
Science
Semantics
Tendinopathy - genetics
Tendinopathy - metabolism
Tendinopathy - pathology
Tendons - metabolism
Tendons - pathology
title Semantic interrogation of a multi knowledge domain ontological model of tendinopathy identifies four strong candidate risk genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20interrogation%20of%20a%20multi%20knowledge%20domain%20ontological%20model%20of%20tendinopathy%20identifies%20four%20strong%20candidate%20risk%20genes&rft.jtitle=Scientific%20reports&rft.au=Saunders,%20Colleen%20J.&rft.date=2016-01-25&rft.volume=6&rft.issue=1&rft.spage=19820&rft.epage=19820&rft.pages=19820-19820&rft.artnum=19820&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep19820&rft_dat=%3Cproquest_pubme%3E1899046901%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899046901&rft_id=info:pmid/26804977&rfr_iscdi=true