Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer

Purpose: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2016-02, Vol.43 (2), p.843-853
Hauptverfasser: Hata, Nobuhiko, Song, Sang-Eun, Olubiyi, Olutayo, Arimitsu, Yasumichi, Fujimoto, Kosuke, Kato, Takahisa, Tuncali, Kemal, Tani, Soichiro, Tokuda, Junichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient’s whole body motion. Methods: Keeping the device’s minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient’s body, even in the presence of the patient’s frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors’ validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. Results: The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth of 80 mm. The phantom test indicated that the accuracy of probe placement was significantly better with the robotic instrument guide (4.1 mm) than without the guide (6.3 mm, p
ISSN:0094-2405
2473-4209
DOI:10.1118/1.4939875