Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose
An efficient microbial cell factory requires a microorganism that can utilize a broad range of substrates to economically produce value-added chemicals and fuels. The industrially important bacterium Corynebacterium glutamicum has been studied to broaden substrate utilizations for lignocellulose-der...
Gespeichert in:
Veröffentlicht in: | Microbial cell factories 2016-01, Vol.15 (20), p.20-20, Article 20 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 20 |
container_start_page | 20 |
container_title | Microbial cell factories |
container_volume | 15 |
creator | Lee, Jungseok Saddler, Jack N Um, Youngsoon Woo, Han Min |
description | An efficient microbial cell factory requires a microorganism that can utilize a broad range of substrates to economically produce value-added chemicals and fuels. The industrially important bacterium Corynebacterium glutamicum has been studied to broaden substrate utilizations for lignocellulose-derived sugars. However, C. glutamicum ATCC 13032 is incapable of PTS-dependent utilization of cellobiose because it has missing genes annotated to β-glucosidases (bG) and cellobiose-specific PTS permease.
We have engineered and evolved a cellobiose-negative and xylose-negative C. glutamicum that utilizes cellobiose as sole carbon and co-ferments cellobiose and xylose. NGS-genomic and DNA microarray-transcriptomic analysis revealed the multiple genetic mutations for the evolved cellobiose-utilizing strains. As a result, a consortium of mutated transporters and metabolic and auxiliary proteins was responsible for the efficient cellobiose uptake. Evolved and engineered strains expressing an intracellular bG showed a better rate of growth rate on cellobiose as sole carbon source than did other bG-secreting or bG-displaying C. glutamicum strains under aerobic culture. Our strain was also capable of co-fermenting cellobiose and xylose without a biphasic growth, although additional pentose transporter expression did not enhance the xylose uptake rate. We subsequently assessed the strains for simultaneous saccharification and fermentation of cellulosic substrates derived from Canadian Ponderosa Pine.
The combinatorial strategies of metabolic engineering and adaptive evolution enabled to construct C. glutamicum strains that were able to co-ferment cellobiose and xylose. This work could be useful in development of recombinant C. glutamicum strains for efficient lignocellulosic-biomass conversion to produce value-added chemicals and fuels. |
doi_str_mv | 10.1186/s12934-016-0420-z |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4722713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A447599456</galeid><sourcerecordid>A447599456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-3ec882f5c8a2cb97dd1073b345cbcb68f276ba527718e3aa39b4d3e07fd9fbee3</originalsourceid><addsrcrecordid>eNptkstu1DAUhiMEoqXwAGxQJDawSPE1djZIoxGXSpWQuKwt2zlJXSX2EDujzjwHD4xnppQZhLzwkf39_5GP_6J4idElxrJ-FzFpKKsQrivECKq2j4pzzASviOTN46P6rHgW4y1CWEhBnxZnpJYIE07Pi1-LVq-SW0MJ6zDMyQVfat-WIyRtwuBsCb53HmByvi9DV-rSwjAE40KEao_ebYZ97aHXe6dlmDYejLYpq-ax7LOvHp3NZbrRqbShyo0Gt4V4ZHbk9bx40ukhwov7_aL48fHD9-Xn6vrLp6vl4rqyvJGpomClJB23UhNrGtG2GAlqKOPWWFPLjojaaE6EwBKo1rQxrKWARNc2nQGgF8X7g-9qNiO0Fnya9KBWkxv1tFFBO3V6492N6sNaMUGIwDQbvLk3mMLPGWJSo4u7J2kPYY4KixrJBgnOMvr6H_Q2zJPPz8uUYAijGuO_VK8HUM53Ife1O1O1YPk3m4bxOlOX_6HyaiGPOXjoXD4_Ebw9EWQmwV3q9Ryjuvr29ZTFB9ZOIcYJuod5YKR2sVOH2KkcO7WLndpmzavjQT4o_uSM_gYXFtYo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774010611</pqid></control><display><type>article</type><title>Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Springer Nature - Complete Springer Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Lee, Jungseok ; Saddler, Jack N ; Um, Youngsoon ; Woo, Han Min</creator><creatorcontrib>Lee, Jungseok ; Saddler, Jack N ; Um, Youngsoon ; Woo, Han Min</creatorcontrib><description>An efficient microbial cell factory requires a microorganism that can utilize a broad range of substrates to economically produce value-added chemicals and fuels. The industrially important bacterium Corynebacterium glutamicum has been studied to broaden substrate utilizations for lignocellulose-derived sugars. However, C. glutamicum ATCC 13032 is incapable of PTS-dependent utilization of cellobiose because it has missing genes annotated to β-glucosidases (bG) and cellobiose-specific PTS permease.
We have engineered and evolved a cellobiose-negative and xylose-negative C. glutamicum that utilizes cellobiose as sole carbon and co-ferments cellobiose and xylose. NGS-genomic and DNA microarray-transcriptomic analysis revealed the multiple genetic mutations for the evolved cellobiose-utilizing strains. As a result, a consortium of mutated transporters and metabolic and auxiliary proteins was responsible for the efficient cellobiose uptake. Evolved and engineered strains expressing an intracellular bG showed a better rate of growth rate on cellobiose as sole carbon source than did other bG-secreting or bG-displaying C. glutamicum strains under aerobic culture. Our strain was also capable of co-fermenting cellobiose and xylose without a biphasic growth, although additional pentose transporter expression did not enhance the xylose uptake rate. We subsequently assessed the strains for simultaneous saccharification and fermentation of cellulosic substrates derived from Canadian Ponderosa Pine.
The combinatorial strategies of metabolic engineering and adaptive evolution enabled to construct C. glutamicum strains that were able to co-ferment cellobiose and xylose. This work could be useful in development of recombinant C. glutamicum strains for efficient lignocellulosic-biomass conversion to produce value-added chemicals and fuels.</description><identifier>ISSN: 1475-2859</identifier><identifier>EISSN: 1475-2859</identifier><identifier>DOI: 10.1186/s12934-016-0420-z</identifier><identifier>PMID: 26801253</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Cellobiose - metabolism ; Corynebacteria ; Corynebacterium glutamicum - metabolism ; Fermentation ; Genetic aspects ; Metabolic Engineering - methods ; Physiological aspects ; Sugars ; Xylose - metabolism</subject><ispartof>Microbial cell factories, 2016-01, Vol.15 (20), p.20-20, Article 20</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>Lee et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-3ec882f5c8a2cb97dd1073b345cbcb68f276ba527718e3aa39b4d3e07fd9fbee3</citedby><cites>FETCH-LOGICAL-c598t-3ec882f5c8a2cb97dd1073b345cbcb68f276ba527718e3aa39b4d3e07fd9fbee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722713/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722713/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26801253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jungseok</creatorcontrib><creatorcontrib>Saddler, Jack N</creatorcontrib><creatorcontrib>Um, Youngsoon</creatorcontrib><creatorcontrib>Woo, Han Min</creatorcontrib><title>Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose</title><title>Microbial cell factories</title><addtitle>Microb Cell Fact</addtitle><description>An efficient microbial cell factory requires a microorganism that can utilize a broad range of substrates to economically produce value-added chemicals and fuels. The industrially important bacterium Corynebacterium glutamicum has been studied to broaden substrate utilizations for lignocellulose-derived sugars. However, C. glutamicum ATCC 13032 is incapable of PTS-dependent utilization of cellobiose because it has missing genes annotated to β-glucosidases (bG) and cellobiose-specific PTS permease.
We have engineered and evolved a cellobiose-negative and xylose-negative C. glutamicum that utilizes cellobiose as sole carbon and co-ferments cellobiose and xylose. NGS-genomic and DNA microarray-transcriptomic analysis revealed the multiple genetic mutations for the evolved cellobiose-utilizing strains. As a result, a consortium of mutated transporters and metabolic and auxiliary proteins was responsible for the efficient cellobiose uptake. Evolved and engineered strains expressing an intracellular bG showed a better rate of growth rate on cellobiose as sole carbon source than did other bG-secreting or bG-displaying C. glutamicum strains under aerobic culture. Our strain was also capable of co-fermenting cellobiose and xylose without a biphasic growth, although additional pentose transporter expression did not enhance the xylose uptake rate. We subsequently assessed the strains for simultaneous saccharification and fermentation of cellulosic substrates derived from Canadian Ponderosa Pine.
The combinatorial strategies of metabolic engineering and adaptive evolution enabled to construct C. glutamicum strains that were able to co-ferment cellobiose and xylose. This work could be useful in development of recombinant C. glutamicum strains for efficient lignocellulosic-biomass conversion to produce value-added chemicals and fuels.</description><subject>Cellobiose - metabolism</subject><subject>Corynebacteria</subject><subject>Corynebacterium glutamicum - metabolism</subject><subject>Fermentation</subject><subject>Genetic aspects</subject><subject>Metabolic Engineering - methods</subject><subject>Physiological aspects</subject><subject>Sugars</subject><subject>Xylose - metabolism</subject><issn>1475-2859</issn><issn>1475-2859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkstu1DAUhiMEoqXwAGxQJDawSPE1djZIoxGXSpWQuKwt2zlJXSX2EDujzjwHD4xnppQZhLzwkf39_5GP_6J4idElxrJ-FzFpKKsQrivECKq2j4pzzASviOTN46P6rHgW4y1CWEhBnxZnpJYIE07Pi1-LVq-SW0MJ6zDMyQVfat-WIyRtwuBsCb53HmByvi9DV-rSwjAE40KEao_ebYZ97aHXe6dlmDYejLYpq-ax7LOvHp3NZbrRqbShyo0Gt4V4ZHbk9bx40ukhwov7_aL48fHD9-Xn6vrLp6vl4rqyvJGpomClJB23UhNrGtG2GAlqKOPWWFPLjojaaE6EwBKo1rQxrKWARNc2nQGgF8X7g-9qNiO0Fnya9KBWkxv1tFFBO3V6492N6sNaMUGIwDQbvLk3mMLPGWJSo4u7J2kPYY4KixrJBgnOMvr6H_Q2zJPPz8uUYAijGuO_VK8HUM53Ife1O1O1YPk3m4bxOlOX_6HyaiGPOXjoXD4_Ebw9EWQmwV3q9Ryjuvr29ZTFB9ZOIcYJuod5YKR2sVOH2KkcO7WLndpmzavjQT4o_uSM_gYXFtYo</recordid><startdate>20160122</startdate><enddate>20160122</enddate><creator>Lee, Jungseok</creator><creator>Saddler, Jack N</creator><creator>Um, Youngsoon</creator><creator>Woo, Han Min</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160122</creationdate><title>Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose</title><author>Lee, Jungseok ; Saddler, Jack N ; Um, Youngsoon ; Woo, Han Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-3ec882f5c8a2cb97dd1073b345cbcb68f276ba527718e3aa39b4d3e07fd9fbee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cellobiose - metabolism</topic><topic>Corynebacteria</topic><topic>Corynebacterium glutamicum - metabolism</topic><topic>Fermentation</topic><topic>Genetic aspects</topic><topic>Metabolic Engineering - methods</topic><topic>Physiological aspects</topic><topic>Sugars</topic><topic>Xylose - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jungseok</creatorcontrib><creatorcontrib>Saddler, Jack N</creatorcontrib><creatorcontrib>Um, Youngsoon</creatorcontrib><creatorcontrib>Woo, Han Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbial cell factories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jungseok</au><au>Saddler, Jack N</au><au>Um, Youngsoon</au><au>Woo, Han Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose</atitle><jtitle>Microbial cell factories</jtitle><addtitle>Microb Cell Fact</addtitle><date>2016-01-22</date><risdate>2016</risdate><volume>15</volume><issue>20</issue><spage>20</spage><epage>20</epage><pages>20-20</pages><artnum>20</artnum><issn>1475-2859</issn><eissn>1475-2859</eissn><abstract>An efficient microbial cell factory requires a microorganism that can utilize a broad range of substrates to economically produce value-added chemicals and fuels. The industrially important bacterium Corynebacterium glutamicum has been studied to broaden substrate utilizations for lignocellulose-derived sugars. However, C. glutamicum ATCC 13032 is incapable of PTS-dependent utilization of cellobiose because it has missing genes annotated to β-glucosidases (bG) and cellobiose-specific PTS permease.
We have engineered and evolved a cellobiose-negative and xylose-negative C. glutamicum that utilizes cellobiose as sole carbon and co-ferments cellobiose and xylose. NGS-genomic and DNA microarray-transcriptomic analysis revealed the multiple genetic mutations for the evolved cellobiose-utilizing strains. As a result, a consortium of mutated transporters and metabolic and auxiliary proteins was responsible for the efficient cellobiose uptake. Evolved and engineered strains expressing an intracellular bG showed a better rate of growth rate on cellobiose as sole carbon source than did other bG-secreting or bG-displaying C. glutamicum strains under aerobic culture. Our strain was also capable of co-fermenting cellobiose and xylose without a biphasic growth, although additional pentose transporter expression did not enhance the xylose uptake rate. We subsequently assessed the strains for simultaneous saccharification and fermentation of cellulosic substrates derived from Canadian Ponderosa Pine.
The combinatorial strategies of metabolic engineering and adaptive evolution enabled to construct C. glutamicum strains that were able to co-ferment cellobiose and xylose. This work could be useful in development of recombinant C. glutamicum strains for efficient lignocellulosic-biomass conversion to produce value-added chemicals and fuels.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>26801253</pmid><doi>10.1186/s12934-016-0420-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-2859 |
ispartof | Microbial cell factories, 2016-01, Vol.15 (20), p.20-20, Article 20 |
issn | 1475-2859 1475-2859 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4722713 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Springer Nature - Complete Springer Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Cellobiose - metabolism Corynebacteria Corynebacterium glutamicum - metabolism Fermentation Genetic aspects Metabolic Engineering - methods Physiological aspects Sugars Xylose - metabolism |
title | Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20evolution%20and%20metabolic%20engineering%20of%20a%20cellobiose-%20and%20xylose-%20negative%20Corynebacterium%20glutamicum%20that%20co-utilizes%20cellobiose%20and%20xylose&rft.jtitle=Microbial%20cell%20factories&rft.au=Lee,%20Jungseok&rft.date=2016-01-22&rft.volume=15&rft.issue=20&rft.spage=20&rft.epage=20&rft.pages=20-20&rft.artnum=20&rft.issn=1475-2859&rft.eissn=1475-2859&rft_id=info:doi/10.1186/s12934-016-0420-z&rft_dat=%3Cgale_pubme%3EA447599456%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774010611&rft_id=info:pmid/26801253&rft_galeid=A447599456&rfr_iscdi=true |