Tracking and forecasting ecosystem interactions in real time

Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2016-01, Vol.283 (1822), p.20152258
Hauptverfasser: Deyle, Ethan R., May, Robert M., Munch, Stephan B., Sugihara, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1822
container_start_page 20152258
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 283
creator Deyle, Ethan R.
May, Robert M.
Munch, Stephan B.
Sugihara, George
description Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we present a practical method, using available time-series data, to measure and forecast changing interactions in real systems, and identify the underlying mechanisms. The method is illustrated with model data from a marine mesocosm experiment and limnologic field data from Sparkling Lake, WI, USA. From simple to complex, these examples demonstrate the feasibility of quantifying, predicting and understanding state-dependent, nonlinear interactions as they occur in situ and in real time—a requirement for managing resources in a nonlinear, non-equilibrium world.
doi_str_mv 10.1098/rspb.2015.2258
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4721089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760862541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-9b48b2291e05ba29bbab72b182ebdbfa29201693b763c8424c69ac87ef1841ba3</originalsourceid><addsrcrecordid>eNp9kNFrFDEQh4Mo9qy--ij76Muek2yym4AItmgrFBStzyHJzda0u5szyRbOv96sdxYr6FOY5JvfTD5CnlNYU1DyVUxbu2ZAxZoxIR-QFeUdrZkS_CFZgWpZLblgR-RJStcAoIQUj8kRa7u26QBW5PVlNO7GT1eVmTZVHyI6k_JSowtplzKOlZ8yFir7MKVSVBHNUGU_4lPyqDdDwmeH85h8ff_u8vS8vvh49uH07UXtWoBcK8ulZUxRBGENU9Ya2zFLJUO7sX25KR9oVWPLUk5yxl2rjJMd9lRyak1zTN7sc7ezHXHjcMrRDHob_WjiTgfj9f2XyX_TV-FW845RkKoEvDwExPB9xpT16JPDYTAThjlp2rUgWyY4Leh6j7oYUorY342hoBflelGuF-V6UV4aXvy53B3-23EBmj0Qw65YCs5j3unrMMeplP-Ovflf1-cvn05umWx8scg0yIaCoLRR-offHqJko31KM-pfyP34v6f9BOQGsq4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760862541</pqid></control><display><type>article</type><title>Tracking and forecasting ecosystem interactions in real time</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><creator>Deyle, Ethan R. ; May, Robert M. ; Munch, Stephan B. ; Sugihara, George</creator><creatorcontrib>Deyle, Ethan R. ; May, Robert M. ; Munch, Stephan B. ; Sugihara, George</creatorcontrib><description>Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we present a practical method, using available time-series data, to measure and forecast changing interactions in real systems, and identify the underlying mechanisms. The method is illustrated with model data from a marine mesocosm experiment and limnologic field data from Sparkling Lake, WI, USA. From simple to complex, these examples demonstrate the feasibility of quantifying, predicting and understanding state-dependent, nonlinear interactions as they occur in situ and in real time—a requirement for managing resources in a nonlinear, non-equilibrium world.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2015.2258</identifier><identifier>PMID: 26763700</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Aquatic Organisms - physiology ; Changing Interaction Strength ; Community Matrix ; Ecosystem ; Empirical Dynamics ; Models, Theoretical ; Nonlinear ; Nonlinear Dynamics ; Population Dynamics ; S-Map ; State Space Reconstruction ; Time Factors ; Zooplankton - physiology</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2016-01, Vol.283 (1822), p.20152258</ispartof><rights>2016 The Authors.</rights><rights>2016 The Author(s).</rights><rights>2016 The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-9b48b2291e05ba29bbab72b182ebdbfa29201693b763c8424c69ac87ef1841ba3</citedby><cites>FETCH-LOGICAL-c600t-9b48b2291e05ba29bbab72b182ebdbfa29201693b763c8424c69ac87ef1841ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721089/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721089/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26763700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deyle, Ethan R.</creatorcontrib><creatorcontrib>May, Robert M.</creatorcontrib><creatorcontrib>Munch, Stephan B.</creatorcontrib><creatorcontrib>Sugihara, George</creatorcontrib><title>Tracking and forecasting ecosystem interactions in real time</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc Biol Sci</addtitle><description>Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we present a practical method, using available time-series data, to measure and forecast changing interactions in real systems, and identify the underlying mechanisms. The method is illustrated with model data from a marine mesocosm experiment and limnologic field data from Sparkling Lake, WI, USA. From simple to complex, these examples demonstrate the feasibility of quantifying, predicting and understanding state-dependent, nonlinear interactions as they occur in situ and in real time—a requirement for managing resources in a nonlinear, non-equilibrium world.</description><subject>Animals</subject><subject>Aquatic Organisms - physiology</subject><subject>Changing Interaction Strength</subject><subject>Community Matrix</subject><subject>Ecosystem</subject><subject>Empirical Dynamics</subject><subject>Models, Theoretical</subject><subject>Nonlinear</subject><subject>Nonlinear Dynamics</subject><subject>Population Dynamics</subject><subject>S-Map</subject><subject>State Space Reconstruction</subject><subject>Time Factors</subject><subject>Zooplankton - physiology</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kNFrFDEQh4Mo9qy--ij76Muek2yym4AItmgrFBStzyHJzda0u5szyRbOv96sdxYr6FOY5JvfTD5CnlNYU1DyVUxbu2ZAxZoxIR-QFeUdrZkS_CFZgWpZLblgR-RJStcAoIQUj8kRa7u26QBW5PVlNO7GT1eVmTZVHyI6k_JSowtplzKOlZ8yFir7MKVSVBHNUGU_4lPyqDdDwmeH85h8ff_u8vS8vvh49uH07UXtWoBcK8ulZUxRBGENU9Ya2zFLJUO7sX25KR9oVWPLUk5yxl2rjJMd9lRyak1zTN7sc7ezHXHjcMrRDHob_WjiTgfj9f2XyX_TV-FW845RkKoEvDwExPB9xpT16JPDYTAThjlp2rUgWyY4Leh6j7oYUorY342hoBflelGuF-V6UV4aXvy53B3-23EBmj0Qw65YCs5j3unrMMeplP-Ovflf1-cvn05umWx8scg0yIaCoLRR-offHqJko31KM-pfyP34v6f9BOQGsq4</recordid><startdate>20160113</startdate><enddate>20160113</enddate><creator>Deyle, Ethan R.</creator><creator>May, Robert M.</creator><creator>Munch, Stephan B.</creator><creator>Sugihara, George</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160113</creationdate><title>Tracking and forecasting ecosystem interactions in real time</title><author>Deyle, Ethan R. ; May, Robert M. ; Munch, Stephan B. ; Sugihara, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-9b48b2291e05ba29bbab72b182ebdbfa29201693b763c8424c69ac87ef1841ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Aquatic Organisms - physiology</topic><topic>Changing Interaction Strength</topic><topic>Community Matrix</topic><topic>Ecosystem</topic><topic>Empirical Dynamics</topic><topic>Models, Theoretical</topic><topic>Nonlinear</topic><topic>Nonlinear Dynamics</topic><topic>Population Dynamics</topic><topic>S-Map</topic><topic>State Space Reconstruction</topic><topic>Time Factors</topic><topic>Zooplankton - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deyle, Ethan R.</creatorcontrib><creatorcontrib>May, Robert M.</creatorcontrib><creatorcontrib>Munch, Stephan B.</creatorcontrib><creatorcontrib>Sugihara, George</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deyle, Ethan R.</au><au>May, Robert M.</au><au>Munch, Stephan B.</au><au>Sugihara, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking and forecasting ecosystem interactions in real time</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc Biol Sci</addtitle><date>2016-01-13</date><risdate>2016</risdate><volume>283</volume><issue>1822</issue><spage>20152258</spage><pages>20152258-</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we present a practical method, using available time-series data, to measure and forecast changing interactions in real systems, and identify the underlying mechanisms. The method is illustrated with model data from a marine mesocosm experiment and limnologic field data from Sparkling Lake, WI, USA. From simple to complex, these examples demonstrate the feasibility of quantifying, predicting and understanding state-dependent, nonlinear interactions as they occur in situ and in real time—a requirement for managing resources in a nonlinear, non-equilibrium world.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>26763700</pmid><doi>10.1098/rspb.2015.2258</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2016-01, Vol.283 (1822), p.20152258
issn 0962-8452
1471-2954
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4721089
source Jstor Complete Legacy; MEDLINE; PubMed Central
subjects Animals
Aquatic Organisms - physiology
Changing Interaction Strength
Community Matrix
Ecosystem
Empirical Dynamics
Models, Theoretical
Nonlinear
Nonlinear Dynamics
Population Dynamics
S-Map
State Space Reconstruction
Time Factors
Zooplankton - physiology
title Tracking and forecasting ecosystem interactions in real time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20and%20forecasting%20ecosystem%20interactions%20in%20real%20time&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Deyle,%20Ethan%20R.&rft.date=2016-01-13&rft.volume=283&rft.issue=1822&rft.spage=20152258&rft.pages=20152258-&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2015.2258&rft_dat=%3Cproquest_pubme%3E1760862541%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760862541&rft_id=info:pmid/26763700&rfr_iscdi=true