Tracking and forecasting ecosystem interactions in real time
Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2016-01, Vol.283 (1822), p.20152258 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1822 |
container_start_page | 20152258 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 283 |
creator | Deyle, Ethan R. May, Robert M. Munch, Stephan B. Sugihara, George |
description | Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we present a practical method, using available time-series data, to measure and forecast changing interactions in real systems, and identify the underlying mechanisms. The method is illustrated with model data from a marine mesocosm experiment and limnologic field data from Sparkling Lake, WI, USA. From simple to complex, these examples demonstrate the feasibility of quantifying, predicting and understanding state-dependent, nonlinear interactions as they occur in situ and in real time—a requirement for managing resources in a nonlinear, non-equilibrium world. |
doi_str_mv | 10.1098/rspb.2015.2258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4721089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760862541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-9b48b2291e05ba29bbab72b182ebdbfa29201693b763c8424c69ac87ef1841ba3</originalsourceid><addsrcrecordid>eNp9kNFrFDEQh4Mo9qy--ij76Muek2yym4AItmgrFBStzyHJzda0u5szyRbOv96sdxYr6FOY5JvfTD5CnlNYU1DyVUxbu2ZAxZoxIR-QFeUdrZkS_CFZgWpZLblgR-RJStcAoIQUj8kRa7u26QBW5PVlNO7GT1eVmTZVHyI6k_JSowtplzKOlZ8yFir7MKVSVBHNUGU_4lPyqDdDwmeH85h8ff_u8vS8vvh49uH07UXtWoBcK8ulZUxRBGENU9Ya2zFLJUO7sX25KR9oVWPLUk5yxl2rjJMd9lRyak1zTN7sc7ezHXHjcMrRDHob_WjiTgfj9f2XyX_TV-FW845RkKoEvDwExPB9xpT16JPDYTAThjlp2rUgWyY4Leh6j7oYUorY342hoBflelGuF-V6UV4aXvy53B3-23EBmj0Qw65YCs5j3unrMMeplP-Ovflf1-cvn05umWx8scg0yIaCoLRR-offHqJko31KM-pfyP34v6f9BOQGsq4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760862541</pqid></control><display><type>article</type><title>Tracking and forecasting ecosystem interactions in real time</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><creator>Deyle, Ethan R. ; May, Robert M. ; Munch, Stephan B. ; Sugihara, George</creator><creatorcontrib>Deyle, Ethan R. ; May, Robert M. ; Munch, Stephan B. ; Sugihara, George</creatorcontrib><description>Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we present a practical method, using available time-series data, to measure and forecast changing interactions in real systems, and identify the underlying mechanisms. The method is illustrated with model data from a marine mesocosm experiment and limnologic field data from Sparkling Lake, WI, USA. From simple to complex, these examples demonstrate the feasibility of quantifying, predicting and understanding state-dependent, nonlinear interactions as they occur in situ and in real time—a requirement for managing resources in a nonlinear, non-equilibrium world.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2015.2258</identifier><identifier>PMID: 26763700</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Aquatic Organisms - physiology ; Changing Interaction Strength ; Community Matrix ; Ecosystem ; Empirical Dynamics ; Models, Theoretical ; Nonlinear ; Nonlinear Dynamics ; Population Dynamics ; S-Map ; State Space Reconstruction ; Time Factors ; Zooplankton - physiology</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2016-01, Vol.283 (1822), p.20152258</ispartof><rights>2016 The Authors.</rights><rights>2016 The Author(s).</rights><rights>2016 The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-9b48b2291e05ba29bbab72b182ebdbfa29201693b763c8424c69ac87ef1841ba3</citedby><cites>FETCH-LOGICAL-c600t-9b48b2291e05ba29bbab72b182ebdbfa29201693b763c8424c69ac87ef1841ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721089/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721089/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26763700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deyle, Ethan R.</creatorcontrib><creatorcontrib>May, Robert M.</creatorcontrib><creatorcontrib>Munch, Stephan B.</creatorcontrib><creatorcontrib>Sugihara, George</creatorcontrib><title>Tracking and forecasting ecosystem interactions in real time</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc Biol Sci</addtitle><description>Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we present a practical method, using available time-series data, to measure and forecast changing interactions in real systems, and identify the underlying mechanisms. The method is illustrated with model data from a marine mesocosm experiment and limnologic field data from Sparkling Lake, WI, USA. From simple to complex, these examples demonstrate the feasibility of quantifying, predicting and understanding state-dependent, nonlinear interactions as they occur in situ and in real time—a requirement for managing resources in a nonlinear, non-equilibrium world.</description><subject>Animals</subject><subject>Aquatic Organisms - physiology</subject><subject>Changing Interaction Strength</subject><subject>Community Matrix</subject><subject>Ecosystem</subject><subject>Empirical Dynamics</subject><subject>Models, Theoretical</subject><subject>Nonlinear</subject><subject>Nonlinear Dynamics</subject><subject>Population Dynamics</subject><subject>S-Map</subject><subject>State Space Reconstruction</subject><subject>Time Factors</subject><subject>Zooplankton - physiology</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kNFrFDEQh4Mo9qy--ij76Muek2yym4AItmgrFBStzyHJzda0u5szyRbOv96sdxYr6FOY5JvfTD5CnlNYU1DyVUxbu2ZAxZoxIR-QFeUdrZkS_CFZgWpZLblgR-RJStcAoIQUj8kRa7u26QBW5PVlNO7GT1eVmTZVHyI6k_JSowtplzKOlZ8yFir7MKVSVBHNUGU_4lPyqDdDwmeH85h8ff_u8vS8vvh49uH07UXtWoBcK8ulZUxRBGENU9Ya2zFLJUO7sX25KR9oVWPLUk5yxl2rjJMd9lRyak1zTN7sc7ezHXHjcMrRDHob_WjiTgfj9f2XyX_TV-FW845RkKoEvDwExPB9xpT16JPDYTAThjlp2rUgWyY4Leh6j7oYUorY342hoBflelGuF-V6UV4aXvy53B3-23EBmj0Qw65YCs5j3unrMMeplP-Ovflf1-cvn05umWx8scg0yIaCoLRR-offHqJko31KM-pfyP34v6f9BOQGsq4</recordid><startdate>20160113</startdate><enddate>20160113</enddate><creator>Deyle, Ethan R.</creator><creator>May, Robert M.</creator><creator>Munch, Stephan B.</creator><creator>Sugihara, George</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160113</creationdate><title>Tracking and forecasting ecosystem interactions in real time</title><author>Deyle, Ethan R. ; May, Robert M. ; Munch, Stephan B. ; Sugihara, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-9b48b2291e05ba29bbab72b182ebdbfa29201693b763c8424c69ac87ef1841ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Aquatic Organisms - physiology</topic><topic>Changing Interaction Strength</topic><topic>Community Matrix</topic><topic>Ecosystem</topic><topic>Empirical Dynamics</topic><topic>Models, Theoretical</topic><topic>Nonlinear</topic><topic>Nonlinear Dynamics</topic><topic>Population Dynamics</topic><topic>S-Map</topic><topic>State Space Reconstruction</topic><topic>Time Factors</topic><topic>Zooplankton - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deyle, Ethan R.</creatorcontrib><creatorcontrib>May, Robert M.</creatorcontrib><creatorcontrib>Munch, Stephan B.</creatorcontrib><creatorcontrib>Sugihara, George</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deyle, Ethan R.</au><au>May, Robert M.</au><au>Munch, Stephan B.</au><au>Sugihara, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking and forecasting ecosystem interactions in real time</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc Biol Sci</addtitle><date>2016-01-13</date><risdate>2016</risdate><volume>283</volume><issue>1822</issue><spage>20152258</spage><pages>20152258-</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we present a practical method, using available time-series data, to measure and forecast changing interactions in real systems, and identify the underlying mechanisms. The method is illustrated with model data from a marine mesocosm experiment and limnologic field data from Sparkling Lake, WI, USA. From simple to complex, these examples demonstrate the feasibility of quantifying, predicting and understanding state-dependent, nonlinear interactions as they occur in situ and in real time—a requirement for managing resources in a nonlinear, non-equilibrium world.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>26763700</pmid><doi>10.1098/rspb.2015.2258</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 2016-01, Vol.283 (1822), p.20152258 |
issn | 0962-8452 1471-2954 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4721089 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central |
subjects | Animals Aquatic Organisms - physiology Changing Interaction Strength Community Matrix Ecosystem Empirical Dynamics Models, Theoretical Nonlinear Nonlinear Dynamics Population Dynamics S-Map State Space Reconstruction Time Factors Zooplankton - physiology |
title | Tracking and forecasting ecosystem interactions in real time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20and%20forecasting%20ecosystem%20interactions%20in%20real%20time&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Deyle,%20Ethan%20R.&rft.date=2016-01-13&rft.volume=283&rft.issue=1822&rft.spage=20152258&rft.pages=20152258-&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2015.2258&rft_dat=%3Cproquest_pubme%3E1760862541%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760862541&rft_id=info:pmid/26763700&rfr_iscdi=true |