Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration

Innate lymphoid cells increase the growth of mouse intestinal organoids via IL-22 production; recombinant IL-22 promotes growth of both mouse and human organoids, and promotes mouse intestinal stem cell (ISC) expansion and ISC-driven organoid growth via a STAT3-dependent pathway and independently of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2015-12, Vol.528 (7583), p.560-564
Hauptverfasser: Lindemans, Caroline A., Calafiore, Marco, Mertelsmann, Anna M., O’Connor, Margaret H., Dudakov, Jarrod A., Jenq, Robert R., Velardi, Enrico, Young, Lauren F., Smith, Odette M., Lawrence, Gillian, Ivanov, Juliet A., Fu, Ya-Yuan, Takashima, Shuichiro, Hua, Guoqiang, Martin, Maria L., O’Rourke, Kevin P., Lo, Yuan-Hung, Mokry, Michal, Romera-Hernandez, Monica, Cupedo, Tom, Dow, Lukas E., Nieuwenhuis, Edward E., Shroyer, Noah F., Liu, Chen, Kolesnick, Richard, van den Brink, Marcel R. M., Hanash, Alan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 564
container_issue 7583
container_start_page 560
container_title Nature (London)
container_volume 528
creator Lindemans, Caroline A.
Calafiore, Marco
Mertelsmann, Anna M.
O’Connor, Margaret H.
Dudakov, Jarrod A.
Jenq, Robert R.
Velardi, Enrico
Young, Lauren F.
Smith, Odette M.
Lawrence, Gillian
Ivanov, Juliet A.
Fu, Ya-Yuan
Takashima, Shuichiro
Hua, Guoqiang
Martin, Maria L.
O’Rourke, Kevin P.
Lo, Yuan-Hung
Mokry, Michal
Romera-Hernandez, Monica
Cupedo, Tom
Dow, Lukas E.
Nieuwenhuis, Edward E.
Shroyer, Noah F.
Liu, Chen
Kolesnick, Richard
van den Brink, Marcel R. M.
Hanash, Alan M.
description Innate lymphoid cells increase the growth of mouse intestinal organoids via IL-22 production; recombinant IL-22 promotes growth of both mouse and human organoids, and promotes mouse intestinal stem cell (ISC) expansion and ISC-driven organoid growth via a STAT3-dependent pathway and independently of Paneth cells; IL-22 treatment in vivo enhances the recovery of ISCs from intestinal injury. Intestinal repair mechanisms The cellular signals supporting normal epithelial intestine maintenance through regulation of intestinal stem cell (ISC) activity are well characterized, but the signals involved in the regulation of the ISC compartment after damage are still unclear. Alan Hanash and colleagues have found that innate lymphoid cells produce interleukin-22 (IL-22) after injury to increase the growth of mouse intestinal organoids. They further show that recombinant IL-22 promotes ISC expansion in both human and mouse organoids, via a STAT3-dependent pathway and independently of the Paneth cells, which provide for ISC maintenance signals. IL-22 treatment also enhanced the recovery of ISCs from intestinal injury. Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5 + crypt base columnar ISCs for normal epithelial maintenance 1 , 2 . However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury 3 , 4 , increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5 + ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal
doi_str_mv 10.1038/nature16460
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4720437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A438950306</galeid><sourcerecordid>A438950306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-f92eadfefcec105736ae26f514f0fd93026a59a4bdb2bc4502fc2bb199fb6dbf3</originalsourceid><addsrcrecordid>eNp10s9rFDEUB_BBFLtWT95l0Yuio_k1mclFWBZ_LFQFrXgMmczLNnUmmSaZUv97s7aWWVlPgeTDN3kvrygeY_QaI9q8cSpNATBnHN0pFpjVvGS8qe8WC4RIU6KG8qPiQYznCKEK1-x-cUQ4Z6LBYlF82rgEoYfpp3UlIcsx-MEniEub92OyTvVlTDCUGvq-HKCzKkG3hNGmM-it6pcBtuAgqGS9e1jcM6qP8OhmPS6-v393uv5Ynnz5sFmvTkrNUZNKIwiozoDRoDGqasoVEG4qzAwynaCIcFUJxdquJa1mFSJGk7bFQpiWd62hx8Xb69xxavObNLgUVC_HYAcVfkmvrNw_cfZMbv2lZDVBjNY54PlNQPAXUy5UDjbuSlQO_BQlrissGkExzfTZP_TcTyH35Y8iWBDCZmqrepDWGZ_v1btQuWK0ERWiiGf19IDSo72Qc_RiD2mfv-IqbdUUo9x8-7of-PL_dnX6Y_35oNbBxxjA3HYMI7mbJTmbpayfzJt8a_8OTwavrkHMR24LYdaZA3m_AY_v004</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752192243</pqid></control><display><type>article</type><title>Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Lindemans, Caroline A. ; Calafiore, Marco ; Mertelsmann, Anna M. ; O’Connor, Margaret H. ; Dudakov, Jarrod A. ; Jenq, Robert R. ; Velardi, Enrico ; Young, Lauren F. ; Smith, Odette M. ; Lawrence, Gillian ; Ivanov, Juliet A. ; Fu, Ya-Yuan ; Takashima, Shuichiro ; Hua, Guoqiang ; Martin, Maria L. ; O’Rourke, Kevin P. ; Lo, Yuan-Hung ; Mokry, Michal ; Romera-Hernandez, Monica ; Cupedo, Tom ; Dow, Lukas E. ; Nieuwenhuis, Edward E. ; Shroyer, Noah F. ; Liu, Chen ; Kolesnick, Richard ; van den Brink, Marcel R. M. ; Hanash, Alan M.</creator><creatorcontrib>Lindemans, Caroline A. ; Calafiore, Marco ; Mertelsmann, Anna M. ; O’Connor, Margaret H. ; Dudakov, Jarrod A. ; Jenq, Robert R. ; Velardi, Enrico ; Young, Lauren F. ; Smith, Odette M. ; Lawrence, Gillian ; Ivanov, Juliet A. ; Fu, Ya-Yuan ; Takashima, Shuichiro ; Hua, Guoqiang ; Martin, Maria L. ; O’Rourke, Kevin P. ; Lo, Yuan-Hung ; Mokry, Michal ; Romera-Hernandez, Monica ; Cupedo, Tom ; Dow, Lukas E. ; Nieuwenhuis, Edward E. ; Shroyer, Noah F. ; Liu, Chen ; Kolesnick, Richard ; van den Brink, Marcel R. M. ; Hanash, Alan M.</creatorcontrib><description>Innate lymphoid cells increase the growth of mouse intestinal organoids via IL-22 production; recombinant IL-22 promotes growth of both mouse and human organoids, and promotes mouse intestinal stem cell (ISC) expansion and ISC-driven organoid growth via a STAT3-dependent pathway and independently of Paneth cells; IL-22 treatment in vivo enhances the recovery of ISCs from intestinal injury. Intestinal repair mechanisms The cellular signals supporting normal epithelial intestine maintenance through regulation of intestinal stem cell (ISC) activity are well characterized, but the signals involved in the regulation of the ISC compartment after damage are still unclear. Alan Hanash and colleagues have found that innate lymphoid cells produce interleukin-22 (IL-22) after injury to increase the growth of mouse intestinal organoids. They further show that recombinant IL-22 promotes ISC expansion in both human and mouse organoids, via a STAT3-dependent pathway and independently of the Paneth cells, which provide for ISC maintenance signals. IL-22 treatment also enhanced the recovery of ISCs from intestinal injury. Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5 + crypt base columnar ISCs for normal epithelial maintenance 1 , 2 . However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury 3 , 4 , increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5 + ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature16460</identifier><identifier>PMID: 26649819</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/127/1213 ; 631/250/1904 ; 631/250/347 ; 631/532/2437 ; Animals ; Bone marrow ; Cell cycle ; Cytokines ; Epidermal growth factor ; Epithelial cells ; Epithelial Cells - cytology ; Epithelial Cells - immunology ; Epithelial Cells - pathology ; Female ; Gene expression ; Graft vs Host Disease - pathology ; Health aspects ; Humanities and Social Sciences ; Humans ; Immune system ; Immunity, Mucosal ; Interleukin-22 ; Interleukins ; Interleukins - deficiency ; Interleukins - immunology ; Intestinal Mucosa - cytology ; Intestinal Mucosa - immunology ; Intestinal Mucosa - pathology ; Intestine, Small - cytology ; Intestine, Small - immunology ; Intestine, Small - pathology ; Large intestine ; letter ; Mice ; multidisciplinary ; Organoids - cytology ; Organoids - growth &amp; development ; Organoids - immunology ; Paneth Cells - cytology ; Phosphorylation ; Physiological aspects ; Regeneration ; Regeneration (Biology) ; Rodents ; Science ; Signal Transduction ; Small intestine ; STAT3 Transcription Factor - metabolism ; Stem Cell Niche ; Stem cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Transplants &amp; implants</subject><ispartof>Nature (London), 2015-12, Vol.528 (7583), p.560-564</ispartof><rights>Springer Nature Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 24-Dec 31, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-f92eadfefcec105736ae26f514f0fd93026a59a4bdb2bc4502fc2bb199fb6dbf3</citedby><cites>FETCH-LOGICAL-c608t-f92eadfefcec105736ae26f514f0fd93026a59a4bdb2bc4502fc2bb199fb6dbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature16460$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature16460$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26649819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindemans, Caroline A.</creatorcontrib><creatorcontrib>Calafiore, Marco</creatorcontrib><creatorcontrib>Mertelsmann, Anna M.</creatorcontrib><creatorcontrib>O’Connor, Margaret H.</creatorcontrib><creatorcontrib>Dudakov, Jarrod A.</creatorcontrib><creatorcontrib>Jenq, Robert R.</creatorcontrib><creatorcontrib>Velardi, Enrico</creatorcontrib><creatorcontrib>Young, Lauren F.</creatorcontrib><creatorcontrib>Smith, Odette M.</creatorcontrib><creatorcontrib>Lawrence, Gillian</creatorcontrib><creatorcontrib>Ivanov, Juliet A.</creatorcontrib><creatorcontrib>Fu, Ya-Yuan</creatorcontrib><creatorcontrib>Takashima, Shuichiro</creatorcontrib><creatorcontrib>Hua, Guoqiang</creatorcontrib><creatorcontrib>Martin, Maria L.</creatorcontrib><creatorcontrib>O’Rourke, Kevin P.</creatorcontrib><creatorcontrib>Lo, Yuan-Hung</creatorcontrib><creatorcontrib>Mokry, Michal</creatorcontrib><creatorcontrib>Romera-Hernandez, Monica</creatorcontrib><creatorcontrib>Cupedo, Tom</creatorcontrib><creatorcontrib>Dow, Lukas E.</creatorcontrib><creatorcontrib>Nieuwenhuis, Edward E.</creatorcontrib><creatorcontrib>Shroyer, Noah F.</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Kolesnick, Richard</creatorcontrib><creatorcontrib>van den Brink, Marcel R. M.</creatorcontrib><creatorcontrib>Hanash, Alan M.</creatorcontrib><title>Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Innate lymphoid cells increase the growth of mouse intestinal organoids via IL-22 production; recombinant IL-22 promotes growth of both mouse and human organoids, and promotes mouse intestinal stem cell (ISC) expansion and ISC-driven organoid growth via a STAT3-dependent pathway and independently of Paneth cells; IL-22 treatment in vivo enhances the recovery of ISCs from intestinal injury. Intestinal repair mechanisms The cellular signals supporting normal epithelial intestine maintenance through regulation of intestinal stem cell (ISC) activity are well characterized, but the signals involved in the regulation of the ISC compartment after damage are still unclear. Alan Hanash and colleagues have found that innate lymphoid cells produce interleukin-22 (IL-22) after injury to increase the growth of mouse intestinal organoids. They further show that recombinant IL-22 promotes ISC expansion in both human and mouse organoids, via a STAT3-dependent pathway and independently of the Paneth cells, which provide for ISC maintenance signals. IL-22 treatment also enhanced the recovery of ISCs from intestinal injury. Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5 + crypt base columnar ISCs for normal epithelial maintenance 1 , 2 . However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury 3 , 4 , increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5 + ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.</description><subject>631/250/127/1213</subject><subject>631/250/1904</subject><subject>631/250/347</subject><subject>631/532/2437</subject><subject>Animals</subject><subject>Bone marrow</subject><subject>Cell cycle</subject><subject>Cytokines</subject><subject>Epidermal growth factor</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - immunology</subject><subject>Epithelial Cells - pathology</subject><subject>Female</subject><subject>Gene expression</subject><subject>Graft vs Host Disease - pathology</subject><subject>Health aspects</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunity, Mucosal</subject><subject>Interleukin-22</subject><subject>Interleukins</subject><subject>Interleukins - deficiency</subject><subject>Interleukins - immunology</subject><subject>Intestinal Mucosa - cytology</subject><subject>Intestinal Mucosa - immunology</subject><subject>Intestinal Mucosa - pathology</subject><subject>Intestine, Small - cytology</subject><subject>Intestine, Small - immunology</subject><subject>Intestine, Small - pathology</subject><subject>Large intestine</subject><subject>letter</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Organoids - cytology</subject><subject>Organoids - growth &amp; development</subject><subject>Organoids - immunology</subject><subject>Paneth Cells - cytology</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Regeneration</subject><subject>Regeneration (Biology)</subject><subject>Rodents</subject><subject>Science</subject><subject>Signal Transduction</subject><subject>Small intestine</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Stem Cell Niche</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Transplants &amp; implants</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10s9rFDEUB_BBFLtWT95l0Yuio_k1mclFWBZ_LFQFrXgMmczLNnUmmSaZUv97s7aWWVlPgeTDN3kvrygeY_QaI9q8cSpNATBnHN0pFpjVvGS8qe8WC4RIU6KG8qPiQYznCKEK1-x-cUQ4Z6LBYlF82rgEoYfpp3UlIcsx-MEniEub92OyTvVlTDCUGvq-HKCzKkG3hNGmM-it6pcBtuAgqGS9e1jcM6qP8OhmPS6-v393uv5Ynnz5sFmvTkrNUZNKIwiozoDRoDGqasoVEG4qzAwynaCIcFUJxdquJa1mFSJGk7bFQpiWd62hx8Xb69xxavObNLgUVC_HYAcVfkmvrNw_cfZMbv2lZDVBjNY54PlNQPAXUy5UDjbuSlQO_BQlrissGkExzfTZP_TcTyH35Y8iWBDCZmqrepDWGZ_v1btQuWK0ERWiiGf19IDSo72Qc_RiD2mfv-IqbdUUo9x8-7of-PL_dnX6Y_35oNbBxxjA3HYMI7mbJTmbpayfzJt8a_8OTwavrkHMR24LYdaZA3m_AY_v004</recordid><startdate>20151224</startdate><enddate>20151224</enddate><creator>Lindemans, Caroline A.</creator><creator>Calafiore, Marco</creator><creator>Mertelsmann, Anna M.</creator><creator>O’Connor, Margaret H.</creator><creator>Dudakov, Jarrod A.</creator><creator>Jenq, Robert R.</creator><creator>Velardi, Enrico</creator><creator>Young, Lauren F.</creator><creator>Smith, Odette M.</creator><creator>Lawrence, Gillian</creator><creator>Ivanov, Juliet A.</creator><creator>Fu, Ya-Yuan</creator><creator>Takashima, Shuichiro</creator><creator>Hua, Guoqiang</creator><creator>Martin, Maria L.</creator><creator>O’Rourke, Kevin P.</creator><creator>Lo, Yuan-Hung</creator><creator>Mokry, Michal</creator><creator>Romera-Hernandez, Monica</creator><creator>Cupedo, Tom</creator><creator>Dow, Lukas E.</creator><creator>Nieuwenhuis, Edward E.</creator><creator>Shroyer, Noah F.</creator><creator>Liu, Chen</creator><creator>Kolesnick, Richard</creator><creator>van den Brink, Marcel R. M.</creator><creator>Hanash, Alan M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151224</creationdate><title>Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration</title><author>Lindemans, Caroline A. ; Calafiore, Marco ; Mertelsmann, Anna M. ; O’Connor, Margaret H. ; Dudakov, Jarrod A. ; Jenq, Robert R. ; Velardi, Enrico ; Young, Lauren F. ; Smith, Odette M. ; Lawrence, Gillian ; Ivanov, Juliet A. ; Fu, Ya-Yuan ; Takashima, Shuichiro ; Hua, Guoqiang ; Martin, Maria L. ; O’Rourke, Kevin P. ; Lo, Yuan-Hung ; Mokry, Michal ; Romera-Hernandez, Monica ; Cupedo, Tom ; Dow, Lukas E. ; Nieuwenhuis, Edward E. ; Shroyer, Noah F. ; Liu, Chen ; Kolesnick, Richard ; van den Brink, Marcel R. M. ; Hanash, Alan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-f92eadfefcec105736ae26f514f0fd93026a59a4bdb2bc4502fc2bb199fb6dbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/250/127/1213</topic><topic>631/250/1904</topic><topic>631/250/347</topic><topic>631/532/2437</topic><topic>Animals</topic><topic>Bone marrow</topic><topic>Cell cycle</topic><topic>Cytokines</topic><topic>Epidermal growth factor</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - immunology</topic><topic>Epithelial Cells - pathology</topic><topic>Female</topic><topic>Gene expression</topic><topic>Graft vs Host Disease - pathology</topic><topic>Health aspects</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunity, Mucosal</topic><topic>Interleukin-22</topic><topic>Interleukins</topic><topic>Interleukins - deficiency</topic><topic>Interleukins - immunology</topic><topic>Intestinal Mucosa - cytology</topic><topic>Intestinal Mucosa - immunology</topic><topic>Intestinal Mucosa - pathology</topic><topic>Intestine, Small - cytology</topic><topic>Intestine, Small - immunology</topic><topic>Intestine, Small - pathology</topic><topic>Large intestine</topic><topic>letter</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Organoids - cytology</topic><topic>Organoids - growth &amp; development</topic><topic>Organoids - immunology</topic><topic>Paneth Cells - cytology</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Regeneration</topic><topic>Regeneration (Biology)</topic><topic>Rodents</topic><topic>Science</topic><topic>Signal Transduction</topic><topic>Small intestine</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Stem Cell Niche</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindemans, Caroline A.</creatorcontrib><creatorcontrib>Calafiore, Marco</creatorcontrib><creatorcontrib>Mertelsmann, Anna M.</creatorcontrib><creatorcontrib>O’Connor, Margaret H.</creatorcontrib><creatorcontrib>Dudakov, Jarrod A.</creatorcontrib><creatorcontrib>Jenq, Robert R.</creatorcontrib><creatorcontrib>Velardi, Enrico</creatorcontrib><creatorcontrib>Young, Lauren F.</creatorcontrib><creatorcontrib>Smith, Odette M.</creatorcontrib><creatorcontrib>Lawrence, Gillian</creatorcontrib><creatorcontrib>Ivanov, Juliet A.</creatorcontrib><creatorcontrib>Fu, Ya-Yuan</creatorcontrib><creatorcontrib>Takashima, Shuichiro</creatorcontrib><creatorcontrib>Hua, Guoqiang</creatorcontrib><creatorcontrib>Martin, Maria L.</creatorcontrib><creatorcontrib>O’Rourke, Kevin P.</creatorcontrib><creatorcontrib>Lo, Yuan-Hung</creatorcontrib><creatorcontrib>Mokry, Michal</creatorcontrib><creatorcontrib>Romera-Hernandez, Monica</creatorcontrib><creatorcontrib>Cupedo, Tom</creatorcontrib><creatorcontrib>Dow, Lukas E.</creatorcontrib><creatorcontrib>Nieuwenhuis, Edward E.</creatorcontrib><creatorcontrib>Shroyer, Noah F.</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Kolesnick, Richard</creatorcontrib><creatorcontrib>van den Brink, Marcel R. M.</creatorcontrib><creatorcontrib>Hanash, Alan M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindemans, Caroline A.</au><au>Calafiore, Marco</au><au>Mertelsmann, Anna M.</au><au>O’Connor, Margaret H.</au><au>Dudakov, Jarrod A.</au><au>Jenq, Robert R.</au><au>Velardi, Enrico</au><au>Young, Lauren F.</au><au>Smith, Odette M.</au><au>Lawrence, Gillian</au><au>Ivanov, Juliet A.</au><au>Fu, Ya-Yuan</au><au>Takashima, Shuichiro</au><au>Hua, Guoqiang</au><au>Martin, Maria L.</au><au>O’Rourke, Kevin P.</au><au>Lo, Yuan-Hung</au><au>Mokry, Michal</au><au>Romera-Hernandez, Monica</au><au>Cupedo, Tom</au><au>Dow, Lukas E.</au><au>Nieuwenhuis, Edward E.</au><au>Shroyer, Noah F.</au><au>Liu, Chen</au><au>Kolesnick, Richard</au><au>van den Brink, Marcel R. M.</au><au>Hanash, Alan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2015-12-24</date><risdate>2015</risdate><volume>528</volume><issue>7583</issue><spage>560</spage><epage>564</epage><pages>560-564</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Innate lymphoid cells increase the growth of mouse intestinal organoids via IL-22 production; recombinant IL-22 promotes growth of both mouse and human organoids, and promotes mouse intestinal stem cell (ISC) expansion and ISC-driven organoid growth via a STAT3-dependent pathway and independently of Paneth cells; IL-22 treatment in vivo enhances the recovery of ISCs from intestinal injury. Intestinal repair mechanisms The cellular signals supporting normal epithelial intestine maintenance through regulation of intestinal stem cell (ISC) activity are well characterized, but the signals involved in the regulation of the ISC compartment after damage are still unclear. Alan Hanash and colleagues have found that innate lymphoid cells produce interleukin-22 (IL-22) after injury to increase the growth of mouse intestinal organoids. They further show that recombinant IL-22 promotes ISC expansion in both human and mouse organoids, via a STAT3-dependent pathway and independently of the Paneth cells, which provide for ISC maintenance signals. IL-22 treatment also enhanced the recovery of ISCs from intestinal injury. Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5 + crypt base columnar ISCs for normal epithelial maintenance 1 , 2 . However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury 3 , 4 , increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5 + ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26649819</pmid><doi>10.1038/nature16460</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2015-12, Vol.528 (7583), p.560-564
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4720437
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/250/127/1213
631/250/1904
631/250/347
631/532/2437
Animals
Bone marrow
Cell cycle
Cytokines
Epidermal growth factor
Epithelial cells
Epithelial Cells - cytology
Epithelial Cells - immunology
Epithelial Cells - pathology
Female
Gene expression
Graft vs Host Disease - pathology
Health aspects
Humanities and Social Sciences
Humans
Immune system
Immunity, Mucosal
Interleukin-22
Interleukins
Interleukins - deficiency
Interleukins - immunology
Intestinal Mucosa - cytology
Intestinal Mucosa - immunology
Intestinal Mucosa - pathology
Intestine, Small - cytology
Intestine, Small - immunology
Intestine, Small - pathology
Large intestine
letter
Mice
multidisciplinary
Organoids - cytology
Organoids - growth & development
Organoids - immunology
Paneth Cells - cytology
Phosphorylation
Physiological aspects
Regeneration
Regeneration (Biology)
Rodents
Science
Signal Transduction
Small intestine
STAT3 Transcription Factor - metabolism
Stem Cell Niche
Stem cells
Stem Cells - cytology
Stem Cells - metabolism
Transplants & implants
title Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interleukin-22%20promotes%20intestinal-stem-cell-mediated%20epithelial%20regeneration&rft.jtitle=Nature%20(London)&rft.au=Lindemans,%20Caroline%20A.&rft.date=2015-12-24&rft.volume=528&rft.issue=7583&rft.spage=560&rft.epage=564&rft.pages=560-564&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature16460&rft_dat=%3Cgale_pubme%3EA438950306%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1752192243&rft_id=info:pmid/26649819&rft_galeid=A438950306&rfr_iscdi=true