Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae

β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bacteriology 2016-02, Vol.198 (3), p.463-476
Hauptverfasser: Hou, Jing, Zheng, Heping, Chruszcz, Maksymilian, Zimmerman, Matthew D, Shumilin, Igor A, Osinski, Tomasz, Demas, Matt, Grimshaw, Sarah, Minor, Wladek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 476
container_issue 3
container_start_page 463
container_title Journal of bacteriology
container_volume 198
creator Hou, Jing
Zheng, Heping
Chruszcz, Maksymilian
Zimmerman, Matthew D
Shumilin, Igor A
Osinski, Tomasz
Demas, Matt
Grimshaw, Sarah
Minor, Wladek
description β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the α4/α5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop β4-α4 and loop β5-α5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants. This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae.
doi_str_mv 10.1128/JB.00360-15
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4719456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760903499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-728e31c6eba52283cf53ef418edf2844a87154fd42712f7228f14d3d8c71a8f73</originalsourceid><addsrcrecordid>eNqNkctuFDEQRS0EIkNgxR55GYQ6uPzodm-QJkMSCJFAvLaWx13OGPW0E9sdKXwWH8I3YZIQwY5N1aKOjurqEvIU2D4A1y9PDvYZEy1rQN0jC2C9bpQS7D5ZMMah6aEXO-RRzt8YAykVf0h2eFsJrfiCfH8dckZXwnRGywbpp5JmV-ZkR3o44hankqmP6fq2rNilLSFONHr680fzDku07mps9pZ10pVNKWCiH1IsGKbn9CMOVWYzUp_iln4N6xQidZs4YrL4mDzwdsz45Hbvki9Hh59Xb5rT98dvV8vTxkmQpem4RgGuxbVVnGvhvBLoJWgcPNdSWt2Bkn6QvAPuu4p4kIMYtOvAat-JXfLqxns-r7c4uJqpxjPnKWxtujLRBvPvZQobcxYvjeygl6qtgr1bQYoXM-ZitiE7HEc7YZyzga7VqtVMdf-Dsp4J2fcVfXGDuhRzTujvPgJmfhdrTg7MdbEGVKWf_R3ijv3TpPgFmVOf4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760903499</pqid></control><display><type>article</type><title>Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae</title><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Hou, Jing ; Zheng, Heping ; Chruszcz, Maksymilian ; Zimmerman, Matthew D ; Shumilin, Igor A ; Osinski, Tomasz ; Demas, Matt ; Grimshaw, Sarah ; Minor, Wladek</creator><contributor>DiRita, V. J.</contributor><creatorcontrib>Hou, Jing ; Zheng, Heping ; Chruszcz, Maksymilian ; Zimmerman, Matthew D ; Shumilin, Igor A ; Osinski, Tomasz ; Demas, Matt ; Grimshaw, Sarah ; Minor, Wladek ; DiRita, V. J.</creatorcontrib><description>β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the α4/α5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop β4-α4 and loop β5-α5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants. This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae.</description><identifier>ISSN: 0021-9193</identifier><identifier>EISSN: 1098-5530</identifier><identifier>DOI: 10.1128/JB.00360-15</identifier><identifier>PMID: 26553852</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - genetics ; 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - metabolism ; Cloning, Molecular ; Enzyme Activation - physiology ; Gene Expression Regulation, Bacterial - physiology ; Gene Expression Regulation, Enzymologic - physiology ; Models, Molecular ; Mutagenesis ; Mutation ; NADP - genetics ; NADP - metabolism ; Protein Binding ; Protein Conformation ; Tyrosine - chemistry ; Vibrio cholerae ; Vibrio cholerae - enzymology ; Vibrio cholerae - genetics ; Vibrio cholerae - metabolism</subject><ispartof>Journal of bacteriology, 2016-02, Vol.198 (3), p.463-476</ispartof><rights>Copyright © 2016, American Society for Microbiology. All Rights Reserved.</rights><rights>Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-728e31c6eba52283cf53ef418edf2844a87154fd42712f7228f14d3d8c71a8f73</citedby><cites>FETCH-LOGICAL-c414t-728e31c6eba52283cf53ef418edf2844a87154fd42712f7228f14d3d8c71a8f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719456/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719456/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26553852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>DiRita, V. J.</contributor><creatorcontrib>Hou, Jing</creatorcontrib><creatorcontrib>Zheng, Heping</creatorcontrib><creatorcontrib>Chruszcz, Maksymilian</creatorcontrib><creatorcontrib>Zimmerman, Matthew D</creatorcontrib><creatorcontrib>Shumilin, Igor A</creatorcontrib><creatorcontrib>Osinski, Tomasz</creatorcontrib><creatorcontrib>Demas, Matt</creatorcontrib><creatorcontrib>Grimshaw, Sarah</creatorcontrib><creatorcontrib>Minor, Wladek</creatorcontrib><title>Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae</title><title>Journal of bacteriology</title><addtitle>J Bacteriol</addtitle><description>β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the α4/α5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop β4-α4 and loop β5-α5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants. This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae.</description><subject>3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - genetics</subject><subject>3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - metabolism</subject><subject>Cloning, Molecular</subject><subject>Enzyme Activation - physiology</subject><subject>Gene Expression Regulation, Bacterial - physiology</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Models, Molecular</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>NADP - genetics</subject><subject>NADP - metabolism</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Tyrosine - chemistry</subject><subject>Vibrio cholerae</subject><subject>Vibrio cholerae - enzymology</subject><subject>Vibrio cholerae - genetics</subject><subject>Vibrio cholerae - metabolism</subject><issn>0021-9193</issn><issn>1098-5530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctuFDEQRS0EIkNgxR55GYQ6uPzodm-QJkMSCJFAvLaWx13OGPW0E9sdKXwWH8I3YZIQwY5N1aKOjurqEvIU2D4A1y9PDvYZEy1rQN0jC2C9bpQS7D5ZMMah6aEXO-RRzt8YAykVf0h2eFsJrfiCfH8dckZXwnRGywbpp5JmV-ZkR3o44hankqmP6fq2rNilLSFONHr680fzDku07mps9pZ10pVNKWCiH1IsGKbn9CMOVWYzUp_iln4N6xQidZs4YrL4mDzwdsz45Hbvki9Hh59Xb5rT98dvV8vTxkmQpem4RgGuxbVVnGvhvBLoJWgcPNdSWt2Bkn6QvAPuu4p4kIMYtOvAat-JXfLqxns-r7c4uJqpxjPnKWxtujLRBvPvZQobcxYvjeygl6qtgr1bQYoXM-ZitiE7HEc7YZyzga7VqtVMdf-Dsp4J2fcVfXGDuhRzTujvPgJmfhdrTg7MdbEGVKWf_R3ijv3TpPgFmVOf4g</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Hou, Jing</creator><creator>Zheng, Heping</creator><creator>Chruszcz, Maksymilian</creator><creator>Zimmerman, Matthew D</creator><creator>Shumilin, Igor A</creator><creator>Osinski, Tomasz</creator><creator>Demas, Matt</creator><creator>Grimshaw, Sarah</creator><creator>Minor, Wladek</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20160201</creationdate><title>Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae</title><author>Hou, Jing ; Zheng, Heping ; Chruszcz, Maksymilian ; Zimmerman, Matthew D ; Shumilin, Igor A ; Osinski, Tomasz ; Demas, Matt ; Grimshaw, Sarah ; Minor, Wladek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-728e31c6eba52283cf53ef418edf2844a87154fd42712f7228f14d3d8c71a8f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - genetics</topic><topic>3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - metabolism</topic><topic>Cloning, Molecular</topic><topic>Enzyme Activation - physiology</topic><topic>Gene Expression Regulation, Bacterial - physiology</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Models, Molecular</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>NADP - genetics</topic><topic>NADP - metabolism</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Tyrosine - chemistry</topic><topic>Vibrio cholerae</topic><topic>Vibrio cholerae - enzymology</topic><topic>Vibrio cholerae - genetics</topic><topic>Vibrio cholerae - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Jing</creatorcontrib><creatorcontrib>Zheng, Heping</creatorcontrib><creatorcontrib>Chruszcz, Maksymilian</creatorcontrib><creatorcontrib>Zimmerman, Matthew D</creatorcontrib><creatorcontrib>Shumilin, Igor A</creatorcontrib><creatorcontrib>Osinski, Tomasz</creatorcontrib><creatorcontrib>Demas, Matt</creatorcontrib><creatorcontrib>Grimshaw, Sarah</creatorcontrib><creatorcontrib>Minor, Wladek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of bacteriology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Jing</au><au>Zheng, Heping</au><au>Chruszcz, Maksymilian</au><au>Zimmerman, Matthew D</au><au>Shumilin, Igor A</au><au>Osinski, Tomasz</au><au>Demas, Matt</au><au>Grimshaw, Sarah</au><au>Minor, Wladek</au><au>DiRita, V. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae</atitle><jtitle>Journal of bacteriology</jtitle><addtitle>J Bacteriol</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>198</volume><issue>3</issue><spage>463</spage><epage>476</epage><pages>463-476</pages><issn>0021-9193</issn><eissn>1098-5530</eissn><abstract>β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the α4/α5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop β4-α4 and loop β5-α5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants. This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>26553852</pmid><doi>10.1128/JB.00360-15</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9193
ispartof Journal of bacteriology, 2016-02, Vol.198 (3), p.463-476
issn 0021-9193
1098-5530
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4719456
source MEDLINE; PubMed Central; EZB Electronic Journals Library
subjects 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - genetics
3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - metabolism
Cloning, Molecular
Enzyme Activation - physiology
Gene Expression Regulation, Bacterial - physiology
Gene Expression Regulation, Enzymologic - physiology
Models, Molecular
Mutagenesis
Mutation
NADP - genetics
NADP - metabolism
Protein Binding
Protein Conformation
Tyrosine - chemistry
Vibrio cholerae
Vibrio cholerae - enzymology
Vibrio cholerae - genetics
Vibrio cholerae - metabolism
title Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissecting%20the%20Structural%20Elements%20for%20the%20Activation%20of%20%CE%B2-Ketoacyl-(Acyl%20Carrier%20Protein)%20Reductase%20from%20Vibrio%20cholerae&rft.jtitle=Journal%20of%20bacteriology&rft.au=Hou,%20Jing&rft.date=2016-02-01&rft.volume=198&rft.issue=3&rft.spage=463&rft.epage=476&rft.pages=463-476&rft.issn=0021-9193&rft.eissn=1098-5530&rft_id=info:doi/10.1128/JB.00360-15&rft_dat=%3Cproquest_pubme%3E1760903499%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760903499&rft_id=info:pmid/26553852&rfr_iscdi=true