Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae
β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the f...
Gespeichert in:
Veröffentlicht in: | Journal of bacteriology 2016-02, Vol.198 (3), p.463-476 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 476 |
---|---|
container_issue | 3 |
container_start_page | 463 |
container_title | Journal of bacteriology |
container_volume | 198 |
creator | Hou, Jing Zheng, Heping Chruszcz, Maksymilian Zimmerman, Matthew D Shumilin, Igor A Osinski, Tomasz Demas, Matt Grimshaw, Sarah Minor, Wladek |
description | β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the α4/α5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop β4-α4 and loop β5-α5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants.
This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae. |
doi_str_mv | 10.1128/JB.00360-15 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4719456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760903499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-728e31c6eba52283cf53ef418edf2844a87154fd42712f7228f14d3d8c71a8f73</originalsourceid><addsrcrecordid>eNqNkctuFDEQRS0EIkNgxR55GYQ6uPzodm-QJkMSCJFAvLaWx13OGPW0E9sdKXwWH8I3YZIQwY5N1aKOjurqEvIU2D4A1y9PDvYZEy1rQN0jC2C9bpQS7D5ZMMah6aEXO-RRzt8YAykVf0h2eFsJrfiCfH8dckZXwnRGywbpp5JmV-ZkR3o44hankqmP6fq2rNilLSFONHr680fzDku07mps9pZ10pVNKWCiH1IsGKbn9CMOVWYzUp_iln4N6xQidZs4YrL4mDzwdsz45Hbvki9Hh59Xb5rT98dvV8vTxkmQpem4RgGuxbVVnGvhvBLoJWgcPNdSWt2Bkn6QvAPuu4p4kIMYtOvAat-JXfLqxns-r7c4uJqpxjPnKWxtujLRBvPvZQobcxYvjeygl6qtgr1bQYoXM-ZitiE7HEc7YZyzga7VqtVMdf-Dsp4J2fcVfXGDuhRzTujvPgJmfhdrTg7MdbEGVKWf_R3ijv3TpPgFmVOf4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760903499</pqid></control><display><type>article</type><title>Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae</title><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Hou, Jing ; Zheng, Heping ; Chruszcz, Maksymilian ; Zimmerman, Matthew D ; Shumilin, Igor A ; Osinski, Tomasz ; Demas, Matt ; Grimshaw, Sarah ; Minor, Wladek</creator><contributor>DiRita, V. J.</contributor><creatorcontrib>Hou, Jing ; Zheng, Heping ; Chruszcz, Maksymilian ; Zimmerman, Matthew D ; Shumilin, Igor A ; Osinski, Tomasz ; Demas, Matt ; Grimshaw, Sarah ; Minor, Wladek ; DiRita, V. J.</creatorcontrib><description>β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the α4/α5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop β4-α4 and loop β5-α5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants.
This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae.</description><identifier>ISSN: 0021-9193</identifier><identifier>EISSN: 1098-5530</identifier><identifier>DOI: 10.1128/JB.00360-15</identifier><identifier>PMID: 26553852</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - genetics ; 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - metabolism ; Cloning, Molecular ; Enzyme Activation - physiology ; Gene Expression Regulation, Bacterial - physiology ; Gene Expression Regulation, Enzymologic - physiology ; Models, Molecular ; Mutagenesis ; Mutation ; NADP - genetics ; NADP - metabolism ; Protein Binding ; Protein Conformation ; Tyrosine - chemistry ; Vibrio cholerae ; Vibrio cholerae - enzymology ; Vibrio cholerae - genetics ; Vibrio cholerae - metabolism</subject><ispartof>Journal of bacteriology, 2016-02, Vol.198 (3), p.463-476</ispartof><rights>Copyright © 2016, American Society for Microbiology. All Rights Reserved.</rights><rights>Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-728e31c6eba52283cf53ef418edf2844a87154fd42712f7228f14d3d8c71a8f73</citedby><cites>FETCH-LOGICAL-c414t-728e31c6eba52283cf53ef418edf2844a87154fd42712f7228f14d3d8c71a8f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719456/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719456/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26553852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>DiRita, V. J.</contributor><creatorcontrib>Hou, Jing</creatorcontrib><creatorcontrib>Zheng, Heping</creatorcontrib><creatorcontrib>Chruszcz, Maksymilian</creatorcontrib><creatorcontrib>Zimmerman, Matthew D</creatorcontrib><creatorcontrib>Shumilin, Igor A</creatorcontrib><creatorcontrib>Osinski, Tomasz</creatorcontrib><creatorcontrib>Demas, Matt</creatorcontrib><creatorcontrib>Grimshaw, Sarah</creatorcontrib><creatorcontrib>Minor, Wladek</creatorcontrib><title>Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae</title><title>Journal of bacteriology</title><addtitle>J Bacteriol</addtitle><description>β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the α4/α5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop β4-α4 and loop β5-α5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants.
This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae.</description><subject>3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - genetics</subject><subject>3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - metabolism</subject><subject>Cloning, Molecular</subject><subject>Enzyme Activation - physiology</subject><subject>Gene Expression Regulation, Bacterial - physiology</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Models, Molecular</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>NADP - genetics</subject><subject>NADP - metabolism</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Tyrosine - chemistry</subject><subject>Vibrio cholerae</subject><subject>Vibrio cholerae - enzymology</subject><subject>Vibrio cholerae - genetics</subject><subject>Vibrio cholerae - metabolism</subject><issn>0021-9193</issn><issn>1098-5530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctuFDEQRS0EIkNgxR55GYQ6uPzodm-QJkMSCJFAvLaWx13OGPW0E9sdKXwWH8I3YZIQwY5N1aKOjurqEvIU2D4A1y9PDvYZEy1rQN0jC2C9bpQS7D5ZMMah6aEXO-RRzt8YAykVf0h2eFsJrfiCfH8dckZXwnRGywbpp5JmV-ZkR3o44hankqmP6fq2rNilLSFONHr680fzDku07mps9pZ10pVNKWCiH1IsGKbn9CMOVWYzUp_iln4N6xQidZs4YrL4mDzwdsz45Hbvki9Hh59Xb5rT98dvV8vTxkmQpem4RgGuxbVVnGvhvBLoJWgcPNdSWt2Bkn6QvAPuu4p4kIMYtOvAat-JXfLqxns-r7c4uJqpxjPnKWxtujLRBvPvZQobcxYvjeygl6qtgr1bQYoXM-ZitiE7HEc7YZyzga7VqtVMdf-Dsp4J2fcVfXGDuhRzTujvPgJmfhdrTg7MdbEGVKWf_R3ijv3TpPgFmVOf4g</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Hou, Jing</creator><creator>Zheng, Heping</creator><creator>Chruszcz, Maksymilian</creator><creator>Zimmerman, Matthew D</creator><creator>Shumilin, Igor A</creator><creator>Osinski, Tomasz</creator><creator>Demas, Matt</creator><creator>Grimshaw, Sarah</creator><creator>Minor, Wladek</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20160201</creationdate><title>Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae</title><author>Hou, Jing ; Zheng, Heping ; Chruszcz, Maksymilian ; Zimmerman, Matthew D ; Shumilin, Igor A ; Osinski, Tomasz ; Demas, Matt ; Grimshaw, Sarah ; Minor, Wladek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-728e31c6eba52283cf53ef418edf2844a87154fd42712f7228f14d3d8c71a8f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - genetics</topic><topic>3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - metabolism</topic><topic>Cloning, Molecular</topic><topic>Enzyme Activation - physiology</topic><topic>Gene Expression Regulation, Bacterial - physiology</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Models, Molecular</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>NADP - genetics</topic><topic>NADP - metabolism</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Tyrosine - chemistry</topic><topic>Vibrio cholerae</topic><topic>Vibrio cholerae - enzymology</topic><topic>Vibrio cholerae - genetics</topic><topic>Vibrio cholerae - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Jing</creatorcontrib><creatorcontrib>Zheng, Heping</creatorcontrib><creatorcontrib>Chruszcz, Maksymilian</creatorcontrib><creatorcontrib>Zimmerman, Matthew D</creatorcontrib><creatorcontrib>Shumilin, Igor A</creatorcontrib><creatorcontrib>Osinski, Tomasz</creatorcontrib><creatorcontrib>Demas, Matt</creatorcontrib><creatorcontrib>Grimshaw, Sarah</creatorcontrib><creatorcontrib>Minor, Wladek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of bacteriology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Jing</au><au>Zheng, Heping</au><au>Chruszcz, Maksymilian</au><au>Zimmerman, Matthew D</au><au>Shumilin, Igor A</au><au>Osinski, Tomasz</au><au>Demas, Matt</au><au>Grimshaw, Sarah</au><au>Minor, Wladek</au><au>DiRita, V. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae</atitle><jtitle>Journal of bacteriology</jtitle><addtitle>J Bacteriol</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>198</volume><issue>3</issue><spage>463</spage><epage>476</epage><pages>463-476</pages><issn>0021-9193</issn><eissn>1098-5530</eissn><abstract>β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the α4/α5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop β4-α4 and loop β5-α5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants.
This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>26553852</pmid><doi>10.1128/JB.00360-15</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9193 |
ispartof | Journal of bacteriology, 2016-02, Vol.198 (3), p.463-476 |
issn | 0021-9193 1098-5530 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4719456 |
source | MEDLINE; PubMed Central; EZB Electronic Journals Library |
subjects | 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - genetics 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - metabolism Cloning, Molecular Enzyme Activation - physiology Gene Expression Regulation, Bacterial - physiology Gene Expression Regulation, Enzymologic - physiology Models, Molecular Mutagenesis Mutation NADP - genetics NADP - metabolism Protein Binding Protein Conformation Tyrosine - chemistry Vibrio cholerae Vibrio cholerae - enzymology Vibrio cholerae - genetics Vibrio cholerae - metabolism |
title | Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissecting%20the%20Structural%20Elements%20for%20the%20Activation%20of%20%CE%B2-Ketoacyl-(Acyl%20Carrier%20Protein)%20Reductase%20from%20Vibrio%20cholerae&rft.jtitle=Journal%20of%20bacteriology&rft.au=Hou,%20Jing&rft.date=2016-02-01&rft.volume=198&rft.issue=3&rft.spage=463&rft.epage=476&rft.pages=463-476&rft.issn=0021-9193&rft.eissn=1098-5530&rft_id=info:doi/10.1128/JB.00360-15&rft_dat=%3Cproquest_pubme%3E1760903499%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760903499&rft_id=info:pmid/26553852&rfr_iscdi=true |