PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles

Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2013-08, Vol.29 (31), p.9891-9896
Hauptverfasser: Moczko, Ewa, Guerreiro, Antonio, Piletska, Elena, Piletsky, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9896
container_issue 31
container_start_page 9891
container_title Langmuir
container_volume 29
creator Moczko, Ewa
Guerreiro, Antonio
Piletska, Elena
Piletsky, Sergey
description Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging.
doi_str_mv 10.1021/la401891f
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4719183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000590983</sourcerecordid><originalsourceid>FETCH-LOGICAL-a468t-713bf91916b7218c87e0f5bbb4183ee01dbb633edd142d14be9e3dc896beb7543</originalsourceid><addsrcrecordid>eNptkctKAzEUhoMotl4WvoC4EXQxmkwykwRBkFKrICpU1yHJnLFT5lKTGUFXvoNv6JMYtbYKLkIW5-P_T74gtEPwEcExOS41w0RIkq-gPkliHCUi5quojzmjEWcp7aEN76cYY0mZXEe9mIok4ZT10cntcBSNW22KsniBbG_QOHh_fRtPoCz3xp3LtYXospq5om7D-FrXzUy7trAl-C20luvSw_b83kT358O7wUV0dTO6HJxdRZqloo04oSaXRJLU8JgIKzjgPDHGMCIoACaZMSmlkGWExeEYkEAzK2RqwPCE0U10-p0760wFmYW6dbpUYadKu2fV6EL9ndTFRD00T4rx0CpoCDiYB7jmsQPfqqrwNrxQ19B0XsXBTCKx_EIPv1HrGu8d5IsagtWnbLWQHdjd33styB-7AdifA9pbXeZO17bwS46nLHxOvOS09WradK4OOv8p_ABrD5Qa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000590983</pqid></control><display><type>article</type><title>PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles</title><source>MEDLINE</source><source>ACS Publications</source><creator>Moczko, Ewa ; Guerreiro, Antonio ; Piletska, Elena ; Piletsky, Sergey</creator><creatorcontrib>Moczko, Ewa ; Guerreiro, Antonio ; Piletska, Elena ; Piletsky, Sergey</creatorcontrib><description>Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la401891f</identifier><identifier>PMID: 23855734</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>binding sites ; biocompatibility ; blood proteins ; Chemistry ; Colloidal state and disperse state ; dispersibility ; dispersions ; drugs ; energy ; Exact sciences and technology ; General and physical chemistry ; Hydrodynamics ; image analysis ; molecular imprinting ; nanoparticles ; Nanoparticles - chemistry ; Particle Size ; phosphates ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; polyethylene glycol ; Polyethylene Glycols - chemical synthesis ; Polyethylene Glycols - chemistry ; Surface Properties</subject><ispartof>Langmuir, 2013-08, Vol.29 (31), p.9891-9896</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a468t-713bf91916b7218c87e0f5bbb4183ee01dbb633edd142d14be9e3dc896beb7543</citedby><cites>FETCH-LOGICAL-a468t-713bf91916b7218c87e0f5bbb4183ee01dbb633edd142d14be9e3dc896beb7543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la401891f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la401891f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27644632$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23855734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moczko, Ewa</creatorcontrib><creatorcontrib>Guerreiro, Antonio</creatorcontrib><creatorcontrib>Piletska, Elena</creatorcontrib><creatorcontrib>Piletsky, Sergey</creatorcontrib><title>PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging.</description><subject>binding sites</subject><subject>biocompatibility</subject><subject>blood proteins</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>dispersibility</subject><subject>dispersions</subject><subject>drugs</subject><subject>energy</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrodynamics</subject><subject>image analysis</subject><subject>molecular imprinting</subject><subject>nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>phosphates</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>polyethylene glycol</subject><subject>Polyethylene Glycols - chemical synthesis</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Surface Properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkctKAzEUhoMotl4WvoC4EXQxmkwykwRBkFKrICpU1yHJnLFT5lKTGUFXvoNv6JMYtbYKLkIW5-P_T74gtEPwEcExOS41w0RIkq-gPkliHCUi5quojzmjEWcp7aEN76cYY0mZXEe9mIok4ZT10cntcBSNW22KsniBbG_QOHh_fRtPoCz3xp3LtYXospq5om7D-FrXzUy7trAl-C20luvSw_b83kT358O7wUV0dTO6HJxdRZqloo04oSaXRJLU8JgIKzjgPDHGMCIoACaZMSmlkGWExeEYkEAzK2RqwPCE0U10-p0760wFmYW6dbpUYadKu2fV6EL9ndTFRD00T4rx0CpoCDiYB7jmsQPfqqrwNrxQ19B0XsXBTCKx_EIPv1HrGu8d5IsagtWnbLWQHdjd33styB-7AdifA9pbXeZO17bwS46nLHxOvOS09WradK4OOv8p_ABrD5Qa</recordid><startdate>20130806</startdate><enddate>20130806</enddate><creator>Moczko, Ewa</creator><creator>Guerreiro, Antonio</creator><creator>Piletska, Elena</creator><creator>Piletsky, Sergey</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130806</creationdate><title>PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles</title><author>Moczko, Ewa ; Guerreiro, Antonio ; Piletska, Elena ; Piletsky, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a468t-713bf91916b7218c87e0f5bbb4183ee01dbb633edd142d14be9e3dc896beb7543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>binding sites</topic><topic>biocompatibility</topic><topic>blood proteins</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>dispersibility</topic><topic>dispersions</topic><topic>drugs</topic><topic>energy</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrodynamics</topic><topic>image analysis</topic><topic>molecular imprinting</topic><topic>nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>phosphates</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>polyethylene glycol</topic><topic>Polyethylene Glycols - chemical synthesis</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moczko, Ewa</creatorcontrib><creatorcontrib>Guerreiro, Antonio</creatorcontrib><creatorcontrib>Piletska, Elena</creatorcontrib><creatorcontrib>Piletsky, Sergey</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moczko, Ewa</au><au>Guerreiro, Antonio</au><au>Piletska, Elena</au><au>Piletsky, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-08-06</date><risdate>2013</risdate><volume>29</volume><issue>31</issue><spage>9891</spage><epage>9896</epage><pages>9891-9896</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23855734</pmid><doi>10.1021/la401891f</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2013-08, Vol.29 (31), p.9891-9896
issn 0743-7463
1520-5827
1520-5827
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4719183
source MEDLINE; ACS Publications
subjects binding sites
biocompatibility
blood proteins
Chemistry
Colloidal state and disperse state
dispersibility
dispersions
drugs
energy
Exact sciences and technology
General and physical chemistry
Hydrodynamics
image analysis
molecular imprinting
nanoparticles
Nanoparticles - chemistry
Particle Size
phosphates
Physical and chemical studies. Granulometry. Electrokinetic phenomena
polyethylene glycol
Polyethylene Glycols - chemical synthesis
Polyethylene Glycols - chemistry
Surface Properties
title PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PEG-Stabilized%20Core%E2%80%93Shell%20Surface-Imprinted%20Nanoparticles&rft.jtitle=Langmuir&rft.au=Moczko,%20Ewa&rft.date=2013-08-06&rft.volume=29&rft.issue=31&rft.spage=9891&rft.epage=9896&rft.pages=9891-9896&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la401891f&rft_dat=%3Cproquest_pubme%3E2000590983%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000590983&rft_id=info:pmid/23855734&rfr_iscdi=true