PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles
Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence o...
Gespeichert in:
Veröffentlicht in: | Langmuir 2013-08, Vol.29 (31), p.9891-9896 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9896 |
---|---|
container_issue | 31 |
container_start_page | 9891 |
container_title | Langmuir |
container_volume | 29 |
creator | Moczko, Ewa Guerreiro, Antonio Piletska, Elena Piletsky, Sergey |
description | Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging. |
doi_str_mv | 10.1021/la401891f |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4719183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000590983</sourcerecordid><originalsourceid>FETCH-LOGICAL-a468t-713bf91916b7218c87e0f5bbb4183ee01dbb633edd142d14be9e3dc896beb7543</originalsourceid><addsrcrecordid>eNptkctKAzEUhoMotl4WvoC4EXQxmkwykwRBkFKrICpU1yHJnLFT5lKTGUFXvoNv6JMYtbYKLkIW5-P_T74gtEPwEcExOS41w0RIkq-gPkliHCUi5quojzmjEWcp7aEN76cYY0mZXEe9mIok4ZT10cntcBSNW22KsniBbG_QOHh_fRtPoCz3xp3LtYXospq5om7D-FrXzUy7trAl-C20luvSw_b83kT358O7wUV0dTO6HJxdRZqloo04oSaXRJLU8JgIKzjgPDHGMCIoACaZMSmlkGWExeEYkEAzK2RqwPCE0U10-p0760wFmYW6dbpUYadKu2fV6EL9ndTFRD00T4rx0CpoCDiYB7jmsQPfqqrwNrxQ19B0XsXBTCKx_EIPv1HrGu8d5IsagtWnbLWQHdjd33styB-7AdifA9pbXeZO17bwS46nLHxOvOS09WradK4OOv8p_ABrD5Qa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000590983</pqid></control><display><type>article</type><title>PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles</title><source>MEDLINE</source><source>ACS Publications</source><creator>Moczko, Ewa ; Guerreiro, Antonio ; Piletska, Elena ; Piletsky, Sergey</creator><creatorcontrib>Moczko, Ewa ; Guerreiro, Antonio ; Piletska, Elena ; Piletsky, Sergey</creatorcontrib><description>Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la401891f</identifier><identifier>PMID: 23855734</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>binding sites ; biocompatibility ; blood proteins ; Chemistry ; Colloidal state and disperse state ; dispersibility ; dispersions ; drugs ; energy ; Exact sciences and technology ; General and physical chemistry ; Hydrodynamics ; image analysis ; molecular imprinting ; nanoparticles ; Nanoparticles - chemistry ; Particle Size ; phosphates ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; polyethylene glycol ; Polyethylene Glycols - chemical synthesis ; Polyethylene Glycols - chemistry ; Surface Properties</subject><ispartof>Langmuir, 2013-08, Vol.29 (31), p.9891-9896</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a468t-713bf91916b7218c87e0f5bbb4183ee01dbb633edd142d14be9e3dc896beb7543</citedby><cites>FETCH-LOGICAL-a468t-713bf91916b7218c87e0f5bbb4183ee01dbb633edd142d14be9e3dc896beb7543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la401891f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la401891f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27644632$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23855734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moczko, Ewa</creatorcontrib><creatorcontrib>Guerreiro, Antonio</creatorcontrib><creatorcontrib>Piletska, Elena</creatorcontrib><creatorcontrib>Piletsky, Sergey</creatorcontrib><title>PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging.</description><subject>binding sites</subject><subject>biocompatibility</subject><subject>blood proteins</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>dispersibility</subject><subject>dispersions</subject><subject>drugs</subject><subject>energy</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrodynamics</subject><subject>image analysis</subject><subject>molecular imprinting</subject><subject>nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>phosphates</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>polyethylene glycol</subject><subject>Polyethylene Glycols - chemical synthesis</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Surface Properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkctKAzEUhoMotl4WvoC4EXQxmkwykwRBkFKrICpU1yHJnLFT5lKTGUFXvoNv6JMYtbYKLkIW5-P_T74gtEPwEcExOS41w0RIkq-gPkliHCUi5quojzmjEWcp7aEN76cYY0mZXEe9mIok4ZT10cntcBSNW22KsniBbG_QOHh_fRtPoCz3xp3LtYXospq5om7D-FrXzUy7trAl-C20luvSw_b83kT358O7wUV0dTO6HJxdRZqloo04oSaXRJLU8JgIKzjgPDHGMCIoACaZMSmlkGWExeEYkEAzK2RqwPCE0U10-p0760wFmYW6dbpUYadKu2fV6EL9ndTFRD00T4rx0CpoCDiYB7jmsQPfqqrwNrxQ19B0XsXBTCKx_EIPv1HrGu8d5IsagtWnbLWQHdjd33styB-7AdifA9pbXeZO17bwS46nLHxOvOS09WradK4OOv8p_ABrD5Qa</recordid><startdate>20130806</startdate><enddate>20130806</enddate><creator>Moczko, Ewa</creator><creator>Guerreiro, Antonio</creator><creator>Piletska, Elena</creator><creator>Piletsky, Sergey</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130806</creationdate><title>PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles</title><author>Moczko, Ewa ; Guerreiro, Antonio ; Piletska, Elena ; Piletsky, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a468t-713bf91916b7218c87e0f5bbb4183ee01dbb633edd142d14be9e3dc896beb7543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>binding sites</topic><topic>biocompatibility</topic><topic>blood proteins</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>dispersibility</topic><topic>dispersions</topic><topic>drugs</topic><topic>energy</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrodynamics</topic><topic>image analysis</topic><topic>molecular imprinting</topic><topic>nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>phosphates</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>polyethylene glycol</topic><topic>Polyethylene Glycols - chemical synthesis</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moczko, Ewa</creatorcontrib><creatorcontrib>Guerreiro, Antonio</creatorcontrib><creatorcontrib>Piletska, Elena</creatorcontrib><creatorcontrib>Piletsky, Sergey</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moczko, Ewa</au><au>Guerreiro, Antonio</au><au>Piletska, Elena</au><au>Piletsky, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-08-06</date><risdate>2013</risdate><volume>29</volume><issue>31</issue><spage>9891</spage><epage>9896</epage><pages>9891-9896</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23855734</pmid><doi>10.1021/la401891f</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2013-08, Vol.29 (31), p.9891-9896 |
issn | 0743-7463 1520-5827 1520-5827 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4719183 |
source | MEDLINE; ACS Publications |
subjects | binding sites biocompatibility blood proteins Chemistry Colloidal state and disperse state dispersibility dispersions drugs energy Exact sciences and technology General and physical chemistry Hydrodynamics image analysis molecular imprinting nanoparticles Nanoparticles - chemistry Particle Size phosphates Physical and chemical studies. Granulometry. Electrokinetic phenomena polyethylene glycol Polyethylene Glycols - chemical synthesis Polyethylene Glycols - chemistry Surface Properties |
title | PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PEG-Stabilized%20Core%E2%80%93Shell%20Surface-Imprinted%20Nanoparticles&rft.jtitle=Langmuir&rft.au=Moczko,%20Ewa&rft.date=2013-08-06&rft.volume=29&rft.issue=31&rft.spage=9891&rft.epage=9896&rft.pages=9891-9896&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la401891f&rft_dat=%3Cproquest_pubme%3E2000590983%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000590983&rft_id=info:pmid/23855734&rfr_iscdi=true |