Statistical learning of temporal community structure in the hippocampus

ABSTRACT The hippocampus is involved in the learning and representation of temporal statistics, but little is understood about the kinds of statistics it can uncover. Prior studies have tested various forms of structure that can be learned by tracking the strength of transition probabilities between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hippocampus 2016-01, Vol.26 (1), p.3-8
Hauptverfasser: Schapiro, Anna C., Turk-Browne, Nicholas B., Norman, Kenneth A., Botvinick, Matthew M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 1
container_start_page 3
container_title Hippocampus
container_volume 26
creator Schapiro, Anna C.
Turk-Browne, Nicholas B.
Norman, Kenneth A.
Botvinick, Matthew M.
description ABSTRACT The hippocampus is involved in the learning and representation of temporal statistics, but little is understood about the kinds of statistics it can uncover. Prior studies have tested various forms of structure that can be learned by tracking the strength of transition probabilities between adjacent items in a sequence. We test whether the hippocampus can learn higher‐order structure using sequences that have no variance in transition probability and instead exhibit temporal community structure. We find that the hippocampus is indeed sensitive to this form of structure, as revealed by its representations, activity dynamics, and connectivity with other regions. These findings suggest that the hippocampus is a sophisticated learner of environmental regularities, able to uncover higher‐order structure that requires sensitivity to overlapping associations. © 2015 Wiley Periodicals, Inc.
doi_str_mv 10.1002/hipo.22523
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4715493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760888735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6203-73090c14e5d5913108ccfdce0cdd6dd4a4db611b13fb976e4fbeab7ed07932613</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EoqWw4QFQJDZsUq7_4w0SKjCtVFEqimBnOY7TcUniYDvAvD2eThkBK1a-8v3O8ZEPQk8xHGMA8nLt53BMCCf0HjrEoJoag6D3tzOHWgmKD9CjlG4AMOYAD9EBEZQSIcQhWn3MJvuUvTVDNTgTJz9dV6GvshvnEMulDeO4TD5vqpTjYvMSXeWnKq9dVR6egzXjvKTH6EFvhuSe3J1H6NO7t1cnp_X5xers5PV5bQUBWksKCixmjndcYYqhsbbvrAPbdaLrmGFdKzBuMe1bJYVjfetMK10HUpXEmB6hVzvfeWlHV5RTLiH1HP1o4kYH4_Xfm8mv9XX4rpnEnClaDF7cGcTwbXEp69En64bBTC4sSWMphWAEmPwPVEDTNJLygj7_B70JS5zKTxSKS6ZIo1Shnv0Zfp_6dx0FwDvghx_cZr_HoLdF623R-rZofXr24eJ2Kpp6pyktup97jYlftZBUcv35_UpfiqtL_oZ-0Yr-Aorgq3o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757492899</pqid></control><display><type>article</type><title>Statistical learning of temporal community structure in the hippocampus</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schapiro, Anna C. ; Turk-Browne, Nicholas B. ; Norman, Kenneth A. ; Botvinick, Matthew M.</creator><creatorcontrib>Schapiro, Anna C. ; Turk-Browne, Nicholas B. ; Norman, Kenneth A. ; Botvinick, Matthew M.</creatorcontrib><description>ABSTRACT The hippocampus is involved in the learning and representation of temporal statistics, but little is understood about the kinds of statistics it can uncover. Prior studies have tested various forms of structure that can be learned by tracking the strength of transition probabilities between adjacent items in a sequence. We test whether the hippocampus can learn higher‐order structure using sequences that have no variance in transition probability and instead exhibit temporal community structure. We find that the hippocampus is indeed sensitive to this form of structure, as revealed by its representations, activity dynamics, and connectivity with other regions. These findings suggest that the hippocampus is a sophisticated learner of environmental regularities, able to uncover higher‐order structure that requires sensitivity to overlapping associations. © 2015 Wiley Periodicals, Inc.</description><identifier>ISSN: 1050-9631</identifier><identifier>EISSN: 1098-1063</identifier><identifier>DOI: 10.1002/hipo.22523</identifier><identifier>PMID: 26332666</identifier><identifier>CODEN: HIPPEL</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>background connectivity ; Brain Mapping ; Cerebrovascular Circulation - physiology ; event representation ; fMRI ; Functional Laterality ; Hippocampus - physiology ; Humans ; Magnetic Resonance Imaging ; Neural Pathways - physiology ; Neuropsychological Tests ; Oxygen - blood ; pattern analysis ; Prefrontal Cortex - physiology ; Probability Learning ; Time Perception - physiology ; transition probability</subject><ispartof>Hippocampus, 2016-01, Vol.26 (1), p.3-8</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6203-73090c14e5d5913108ccfdce0cdd6dd4a4db611b13fb976e4fbeab7ed07932613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhipo.22523$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhipo.22523$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26332666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schapiro, Anna C.</creatorcontrib><creatorcontrib>Turk-Browne, Nicholas B.</creatorcontrib><creatorcontrib>Norman, Kenneth A.</creatorcontrib><creatorcontrib>Botvinick, Matthew M.</creatorcontrib><title>Statistical learning of temporal community structure in the hippocampus</title><title>Hippocampus</title><addtitle>Hippocampus</addtitle><description>ABSTRACT The hippocampus is involved in the learning and representation of temporal statistics, but little is understood about the kinds of statistics it can uncover. Prior studies have tested various forms of structure that can be learned by tracking the strength of transition probabilities between adjacent items in a sequence. We test whether the hippocampus can learn higher‐order structure using sequences that have no variance in transition probability and instead exhibit temporal community structure. We find that the hippocampus is indeed sensitive to this form of structure, as revealed by its representations, activity dynamics, and connectivity with other regions. These findings suggest that the hippocampus is a sophisticated learner of environmental regularities, able to uncover higher‐order structure that requires sensitivity to overlapping associations. © 2015 Wiley Periodicals, Inc.</description><subject>background connectivity</subject><subject>Brain Mapping</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>event representation</subject><subject>fMRI</subject><subject>Functional Laterality</subject><subject>Hippocampus - physiology</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Neural Pathways - physiology</subject><subject>Neuropsychological Tests</subject><subject>Oxygen - blood</subject><subject>pattern analysis</subject><subject>Prefrontal Cortex - physiology</subject><subject>Probability Learning</subject><subject>Time Perception - physiology</subject><subject>transition probability</subject><issn>1050-9631</issn><issn>1098-1063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EoqWw4QFQJDZsUq7_4w0SKjCtVFEqimBnOY7TcUniYDvAvD2eThkBK1a-8v3O8ZEPQk8xHGMA8nLt53BMCCf0HjrEoJoag6D3tzOHWgmKD9CjlG4AMOYAD9EBEZQSIcQhWn3MJvuUvTVDNTgTJz9dV6GvshvnEMulDeO4TD5vqpTjYvMSXeWnKq9dVR6egzXjvKTH6EFvhuSe3J1H6NO7t1cnp_X5xers5PV5bQUBWksKCixmjndcYYqhsbbvrAPbdaLrmGFdKzBuMe1bJYVjfetMK10HUpXEmB6hVzvfeWlHV5RTLiH1HP1o4kYH4_Xfm8mv9XX4rpnEnClaDF7cGcTwbXEp69En64bBTC4sSWMphWAEmPwPVEDTNJLygj7_B70JS5zKTxSKS6ZIo1Shnv0Zfp_6dx0FwDvghx_cZr_HoLdF623R-rZofXr24eJ2Kpp6pyktup97jYlftZBUcv35_UpfiqtL_oZ-0Yr-Aorgq3o</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Schapiro, Anna C.</creator><creator>Turk-Browne, Nicholas B.</creator><creator>Norman, Kenneth A.</creator><creator>Botvinick, Matthew M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201601</creationdate><title>Statistical learning of temporal community structure in the hippocampus</title><author>Schapiro, Anna C. ; Turk-Browne, Nicholas B. ; Norman, Kenneth A. ; Botvinick, Matthew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6203-73090c14e5d5913108ccfdce0cdd6dd4a4db611b13fb976e4fbeab7ed07932613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>background connectivity</topic><topic>Brain Mapping</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>event representation</topic><topic>fMRI</topic><topic>Functional Laterality</topic><topic>Hippocampus - physiology</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Neural Pathways - physiology</topic><topic>Neuropsychological Tests</topic><topic>Oxygen - blood</topic><topic>pattern analysis</topic><topic>Prefrontal Cortex - physiology</topic><topic>Probability Learning</topic><topic>Time Perception - physiology</topic><topic>transition probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schapiro, Anna C.</creatorcontrib><creatorcontrib>Turk-Browne, Nicholas B.</creatorcontrib><creatorcontrib>Norman, Kenneth A.</creatorcontrib><creatorcontrib>Botvinick, Matthew M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Hippocampus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schapiro, Anna C.</au><au>Turk-Browne, Nicholas B.</au><au>Norman, Kenneth A.</au><au>Botvinick, Matthew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical learning of temporal community structure in the hippocampus</atitle><jtitle>Hippocampus</jtitle><addtitle>Hippocampus</addtitle><date>2016-01</date><risdate>2016</risdate><volume>26</volume><issue>1</issue><spage>3</spage><epage>8</epage><pages>3-8</pages><issn>1050-9631</issn><eissn>1098-1063</eissn><coden>HIPPEL</coden><abstract>ABSTRACT The hippocampus is involved in the learning and representation of temporal statistics, but little is understood about the kinds of statistics it can uncover. Prior studies have tested various forms of structure that can be learned by tracking the strength of transition probabilities between adjacent items in a sequence. We test whether the hippocampus can learn higher‐order structure using sequences that have no variance in transition probability and instead exhibit temporal community structure. We find that the hippocampus is indeed sensitive to this form of structure, as revealed by its representations, activity dynamics, and connectivity with other regions. These findings suggest that the hippocampus is a sophisticated learner of environmental regularities, able to uncover higher‐order structure that requires sensitivity to overlapping associations. © 2015 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26332666</pmid><doi>10.1002/hipo.22523</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-9631
ispartof Hippocampus, 2016-01, Vol.26 (1), p.3-8
issn 1050-9631
1098-1063
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4715493
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects background connectivity
Brain Mapping
Cerebrovascular Circulation - physiology
event representation
fMRI
Functional Laterality
Hippocampus - physiology
Humans
Magnetic Resonance Imaging
Neural Pathways - physiology
Neuropsychological Tests
Oxygen - blood
pattern analysis
Prefrontal Cortex - physiology
Probability Learning
Time Perception - physiology
transition probability
title Statistical learning of temporal community structure in the hippocampus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20learning%20of%20temporal%20community%20structure%20in%20the%20hippocampus&rft.jtitle=Hippocampus&rft.au=Schapiro,%20Anna%20C.&rft.date=2016-01&rft.volume=26&rft.issue=1&rft.spage=3&rft.epage=8&rft.pages=3-8&rft.issn=1050-9631&rft.eissn=1098-1063&rft.coden=HIPPEL&rft_id=info:doi/10.1002/hipo.22523&rft_dat=%3Cproquest_pubme%3E1760888735%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757492899&rft_id=info:pmid/26332666&rfr_iscdi=true