Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity

Ultrasound-stimulated microbubble dynamics have been shown to be dependent on intrinsic bubble properties, including size and shell characteristics. The effect of the surrounding environment on microbubble response, however, has been less investigated. In particular, microbubble optimization studies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2016-01, Vol.139 (1), p.204-214
Hauptverfasser: Helfield, Brandon, Chen, Xucai, Qin, Bin, Villanueva, Flordeliza S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue 1
container_start_page 204
container_title The Journal of the Acoustical Society of America
container_volume 139
creator Helfield, Brandon
Chen, Xucai
Qin, Bin
Villanueva, Flordeliza S
description Ultrasound-stimulated microbubble dynamics have been shown to be dependent on intrinsic bubble properties, including size and shell characteristics. The effect of the surrounding environment on microbubble response, however, has been less investigated. In particular, microbubble optimization studies are generally conducted in water/saline, characterized by a 1 cP viscosity, for application in the vasculature (i.e., 4 cP). In this study, ultra-high speed microscopy was employed to investigate fluid viscosity effects on phospholipid encapsulated microbubble oscillations at 1 MHz, using a single, eight-cycle pulse at peak negative pressures of 100 and 250 kPa. Microbubble oscillations were shown to be affected by fluid viscosity in a size- and pressure-dependent manner. In general, the oscillation amplitudes exhibited by microbubbles between 3 and 6 μm in 1 cP fluid were larger than in 4 cP fluid, reaching a maximum of 1.7-fold at 100 kPa for microbubbles 3.8 μm in diameter and 1.35-fold at 250 kPa for microbubbles 4.8 μm in diameter. Simulation results were in broad agreement at 250 kPa, however generally underestimated the effect of fluid viscosity at 100 kPa. This is the first experimental demonstration documenting the effects of surrounding fluid viscosity on microbubble oscillations, resulting in behavior not entirely predicted by current microbubble models.
doi_str_mv 10.1121/1.4939123
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4714991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762030670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-66cf862f713f21d57a42eb88cc7dcd08ece219f1d2281fe97d2d821486a733a93</originalsourceid><addsrcrecordid>eNpVkU1LBDEMhosouq4e_AMyRz2MNm23Hx4EEb9gwYsePJVOP7QyO12nMwv-eyu7ip5CyJM3eROEjgCfARA4hzOmqAJCt9AEZgTXckbYNppgjKFmivM9tJ_ze0lnkqpdtEe4JAKDnKCXh87FVXSjaas2LqOrfGfNMo-tGbyrFtH2qRmbpvVVb1wsVMo2tqUaU5cvqpsQvB1ylUIV2rG0r2K2Kcfh8wDtBNNmf7iJU_R8e_N0fV_PH-8erq_mtWUMhppzGyQnQQANBNxMGEZ8I6W1wlmHpbeegArgCJEQvBKOOEmASW4EpUbRKbpc6y7HZuGd9d3Qm1Yv-7gw_adOJur_lS6-6de00kwAUwqKwMlGoE8fo8-DXhQPvnjsfBqzBsEJppgLXNDTNVquknPvw-8YwPr7FRr05hWFPf671y_5c3v6BQ1BhZc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762030670</pqid></control><display><type>article</type><title>Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity</title><source>MEDLINE</source><source>American Institute of Physics</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Helfield, Brandon ; Chen, Xucai ; Qin, Bin ; Villanueva, Flordeliza S</creator><creatorcontrib>Helfield, Brandon ; Chen, Xucai ; Qin, Bin ; Villanueva, Flordeliza S</creatorcontrib><description>Ultrasound-stimulated microbubble dynamics have been shown to be dependent on intrinsic bubble properties, including size and shell characteristics. The effect of the surrounding environment on microbubble response, however, has been less investigated. In particular, microbubble optimization studies are generally conducted in water/saline, characterized by a 1 cP viscosity, for application in the vasculature (i.e., 4 cP). In this study, ultra-high speed microscopy was employed to investigate fluid viscosity effects on phospholipid encapsulated microbubble oscillations at 1 MHz, using a single, eight-cycle pulse at peak negative pressures of 100 and 250 kPa. Microbubble oscillations were shown to be affected by fluid viscosity in a size- and pressure-dependent manner. In general, the oscillation amplitudes exhibited by microbubbles between 3 and 6 μm in 1 cP fluid were larger than in 4 cP fluid, reaching a maximum of 1.7-fold at 100 kPa for microbubbles 3.8 μm in diameter and 1.35-fold at 250 kPa for microbubbles 4.8 μm in diameter. Simulation results were in broad agreement at 250 kPa, however generally underestimated the effect of fluid viscosity at 100 kPa. This is the first experimental demonstration documenting the effects of surrounding fluid viscosity on microbubble oscillations, resulting in behavior not entirely predicted by current microbubble models.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4939123</identifier><identifier>PMID: 26827018</identifier><language>eng</language><publisher>United States: Acoustical Society of America</publisher><subject>Biomedical Acoustics ; Contrast Media - chemistry ; Environment ; Microbubbles ; Motion ; Phospholipids - chemistry ; Ultrasonics ; Viscosity</subject><ispartof>The Journal of the Acoustical Society of America, 2016-01, Vol.139 (1), p.204-214</ispartof><rights>Copyright © 2016 Acoustical Society of America 2016 Acoustical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-66cf862f713f21d57a42eb88cc7dcd08ece219f1d2281fe97d2d821486a733a93</citedby><cites>FETCH-LOGICAL-c441t-66cf862f713f21d57a42eb88cc7dcd08ece219f1d2281fe97d2d821486a733a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26827018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Helfield, Brandon</creatorcontrib><creatorcontrib>Chen, Xucai</creatorcontrib><creatorcontrib>Qin, Bin</creatorcontrib><creatorcontrib>Villanueva, Flordeliza S</creatorcontrib><title>Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Ultrasound-stimulated microbubble dynamics have been shown to be dependent on intrinsic bubble properties, including size and shell characteristics. The effect of the surrounding environment on microbubble response, however, has been less investigated. In particular, microbubble optimization studies are generally conducted in water/saline, characterized by a 1 cP viscosity, for application in the vasculature (i.e., 4 cP). In this study, ultra-high speed microscopy was employed to investigate fluid viscosity effects on phospholipid encapsulated microbubble oscillations at 1 MHz, using a single, eight-cycle pulse at peak negative pressures of 100 and 250 kPa. Microbubble oscillations were shown to be affected by fluid viscosity in a size- and pressure-dependent manner. In general, the oscillation amplitudes exhibited by microbubbles between 3 and 6 μm in 1 cP fluid were larger than in 4 cP fluid, reaching a maximum of 1.7-fold at 100 kPa for microbubbles 3.8 μm in diameter and 1.35-fold at 250 kPa for microbubbles 4.8 μm in diameter. Simulation results were in broad agreement at 250 kPa, however generally underestimated the effect of fluid viscosity at 100 kPa. This is the first experimental demonstration documenting the effects of surrounding fluid viscosity on microbubble oscillations, resulting in behavior not entirely predicted by current microbubble models.</description><subject>Biomedical Acoustics</subject><subject>Contrast Media - chemistry</subject><subject>Environment</subject><subject>Microbubbles</subject><subject>Motion</subject><subject>Phospholipids - chemistry</subject><subject>Ultrasonics</subject><subject>Viscosity</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1LBDEMhosouq4e_AMyRz2MNm23Hx4EEb9gwYsePJVOP7QyO12nMwv-eyu7ip5CyJM3eROEjgCfARA4hzOmqAJCt9AEZgTXckbYNppgjKFmivM9tJ_ze0lnkqpdtEe4JAKDnKCXh87FVXSjaas2LqOrfGfNMo-tGbyrFtH2qRmbpvVVb1wsVMo2tqUaU5cvqpsQvB1ylUIV2rG0r2K2Kcfh8wDtBNNmf7iJU_R8e_N0fV_PH-8erq_mtWUMhppzGyQnQQANBNxMGEZ8I6W1wlmHpbeegArgCJEQvBKOOEmASW4EpUbRKbpc6y7HZuGd9d3Qm1Yv-7gw_adOJur_lS6-6de00kwAUwqKwMlGoE8fo8-DXhQPvnjsfBqzBsEJppgLXNDTNVquknPvw-8YwPr7FRr05hWFPf671y_5c3v6BQ1BhZc</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Helfield, Brandon</creator><creator>Chen, Xucai</creator><creator>Qin, Bin</creator><creator>Villanueva, Flordeliza S</creator><general>Acoustical Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201601</creationdate><title>Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity</title><author>Helfield, Brandon ; Chen, Xucai ; Qin, Bin ; Villanueva, Flordeliza S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-66cf862f713f21d57a42eb88cc7dcd08ece219f1d2281fe97d2d821486a733a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomedical Acoustics</topic><topic>Contrast Media - chemistry</topic><topic>Environment</topic><topic>Microbubbles</topic><topic>Motion</topic><topic>Phospholipids - chemistry</topic><topic>Ultrasonics</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helfield, Brandon</creatorcontrib><creatorcontrib>Chen, Xucai</creatorcontrib><creatorcontrib>Qin, Bin</creatorcontrib><creatorcontrib>Villanueva, Flordeliza S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helfield, Brandon</au><au>Chen, Xucai</au><au>Qin, Bin</au><au>Villanueva, Flordeliza S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2016-01</date><risdate>2016</risdate><volume>139</volume><issue>1</issue><spage>204</spage><epage>214</epage><pages>204-214</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>Ultrasound-stimulated microbubble dynamics have been shown to be dependent on intrinsic bubble properties, including size and shell characteristics. The effect of the surrounding environment on microbubble response, however, has been less investigated. In particular, microbubble optimization studies are generally conducted in water/saline, characterized by a 1 cP viscosity, for application in the vasculature (i.e., 4 cP). In this study, ultra-high speed microscopy was employed to investigate fluid viscosity effects on phospholipid encapsulated microbubble oscillations at 1 MHz, using a single, eight-cycle pulse at peak negative pressures of 100 and 250 kPa. Microbubble oscillations were shown to be affected by fluid viscosity in a size- and pressure-dependent manner. In general, the oscillation amplitudes exhibited by microbubbles between 3 and 6 μm in 1 cP fluid were larger than in 4 cP fluid, reaching a maximum of 1.7-fold at 100 kPa for microbubbles 3.8 μm in diameter and 1.35-fold at 250 kPa for microbubbles 4.8 μm in diameter. Simulation results were in broad agreement at 250 kPa, however generally underestimated the effect of fluid viscosity at 100 kPa. This is the first experimental demonstration documenting the effects of surrounding fluid viscosity on microbubble oscillations, resulting in behavior not entirely predicted by current microbubble models.</abstract><cop>United States</cop><pub>Acoustical Society of America</pub><pmid>26827018</pmid><doi>10.1121/1.4939123</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2016-01, Vol.139 (1), p.204-214
issn 0001-4966
1520-8524
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4714991
source MEDLINE; American Institute of Physics; Alma/SFX Local Collection; AIP Acoustical Society of America
subjects Biomedical Acoustics
Contrast Media - chemistry
Environment
Microbubbles
Motion
Phospholipids - chemistry
Ultrasonics
Viscosity
title Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individual%20lipid%20encapsulated%20microbubble%20radial%20oscillations:%20Effects%20of%20fluid%20viscosity&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Helfield,%20Brandon&rft.date=2016-01&rft.volume=139&rft.issue=1&rft.spage=204&rft.epage=214&rft.pages=204-214&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.4939123&rft_dat=%3Cproquest_pubme%3E1762030670%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762030670&rft_id=info:pmid/26827018&rfr_iscdi=true