Sequential posttranslational modifications regulate PKC degradation
Cross-talk among different types of posttranslational modifications (PTMs) has emerged as an important regulatory mechanism for protein function. Here we elucidate a mechanism that controls PKCα stability via a sequential cascade of PTMs. We demonstrate that PKCα dephosphorylation decreases its sumo...
Gespeichert in:
Veröffentlicht in: | Molecular biology of the cell 2016-01, Vol.27 (2), p.410-420 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cross-talk among different types of posttranslational modifications (PTMs) has emerged as an important regulatory mechanism for protein function. Here we elucidate a mechanism that controls PKCα stability via a sequential cascade of PTMs. We demonstrate that PKCα dephosphorylation decreases its sumoylation, which in turn promotes its ubiquitination and ultimately enhances its degradation via the ubiquitin-proteasome pathway. These findings provide a molecular explanation for the activation-induced down-regulation of PKC proteins. |
---|---|
ISSN: | 1059-1524 1939-4586 |
DOI: | 10.1091/mbc.e15-09-0624 |