Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network

Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors) encounter previously defined and undefined faults under operation. It may inevitably lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational Intelligence and Neuroscience 2016-01, Vol.2016 (2016), p.419-431
Hauptverfasser: Shmshir, Muhammad, Uyaroğlu, Yılmaz, Bayır, Raif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 431
container_issue 2016
container_start_page 419
container_title Computational Intelligence and Neuroscience
container_volume 2016
creator Shmshir, Muhammad
Uyaroğlu, Yılmaz
Bayır, Raif
description Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors) encounter previously defined and undefined faults under operation. It may inevitably lead to the interruption of the electromechanical system operation; hence, economic losses take place at certain times. Therefore, in order to maintain system operation sustainability, the motor should be precisely monitored and the faults are diagnosed considering various significant motor parameters. In this study, the artificial feedforward backpropagation neural network approach is proposed to real-time monitor and diagnose the faults of the hub motor by measuring seven main system parameters. So as to construct a necessary model, we trained the model, using a data set consisting of 4160 samples where each has 7 parameters, by the MATLAB environment until the best model is obtained. The results are encouraging and meaningful for the specific motor and the developed model may be applicable to other types of hub motors. The prosperous model of the whole system was embedded into Arduino Due microcontroller card and the mobile real-time monitoring and fault diagnosis system prototype for hub motor was designed and manufactured.
doi_str_mv 10.1155/2016/7129376
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4706884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A462299463</galeid><airiti_id>P20160527002_201612_201709130017_201709130017_419_431</airiti_id><sourcerecordid>A462299463</sourcerecordid><originalsourceid>FETCH-LOGICAL-a722t-65dbaa37a4f17dca4e003fd653c91c1dbddddcc03a197234ae1a07bb3bb546ce3</originalsourceid><addsrcrecordid>eNqN0s9v0zAUB_AIgdgPuHFGlrggjTI__4wvk6ZBGVKBCW1n6yVxOo80HnZCxX-Pu5Zu44Cay0vkj7-On15RvAL6HkDKY0ZBHWtghmv1pNgHVeqJZJo_3b4ruVccpHRDqdSSsufFHlMlGGnoflF9d9hNLv3CkS-h90OIvp8T7BsyxbEbyAeP8z4kn0hoCZJZWJKLsHSRnI9V3pE9uUqrLVPnmjbEJcaGfHVjxC6XYRnijxfFsxa75F5u6mFxNf14eXY-mX379PnsdDZBzdgwUbKpELlG0YJuahSOUt42SvLaQA1N1eSnrilHMJpxgQ6Q6qriVSWFqh0_LE7WubdjtXBN7foh_4W9jX6B8bcN6O3jld5f23n4ZYWmqixFDni7CYjh5-jSYBc-1a7rsHdhTBZ0qaBUXO1CFeNKQkl3oSAUaFpm-uYfehPG2OemZSWlKJURcK_m2Dnr-zbk29SrUHsqgYoyn6r_q4RizBiheFbv1qqOIaXo2m27gNrVeNnVeNnNeGX--mGLt_jvPGVwtAbXvm9w6XeMc9m4Fh9oY7SQGczWAH30g79vx8Uqh-Yxp5TdZcJd0dQAp7k-_hBgrODA_wCIZfMZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755486941</pqid></control><display><type>article</type><title>Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Shmshir, Muhammad ; Uyaroğlu, Yılmaz ; Bayır, Raif</creator><contributor>Schmuker, Michael</contributor><creatorcontrib>Shmshir, Muhammad ; Uyaroğlu, Yılmaz ; Bayır, Raif ; Schmuker, Michael</creatorcontrib><description>Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors) encounter previously defined and undefined faults under operation. It may inevitably lead to the interruption of the electromechanical system operation; hence, economic losses take place at certain times. Therefore, in order to maintain system operation sustainability, the motor should be precisely monitored and the faults are diagnosed considering various significant motor parameters. In this study, the artificial feedforward backpropagation neural network approach is proposed to real-time monitor and diagnose the faults of the hub motor by measuring seven main system parameters. So as to construct a necessary model, we trained the model, using a data set consisting of 4160 samples where each has 7 parameters, by the MATLAB environment until the best model is obtained. The results are encouraging and meaningful for the specific motor and the developed model may be applicable to other types of hub motors. The prosperous model of the whole system was embedded into Arduino Due microcontroller card and the mobile real-time monitoring and fault diagnosis system prototype for hub motor was designed and manufactured.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2016/7129376</identifier><identifier>PMID: 26819590</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Algorithms ; Back propagation ; CAD ; Computer aided design ; Computer Simulation ; Datasets ; Electric motors ; Electric Power Supplies ; Electronics ; Evaluation ; Fault diagnosis ; Fault location (Engineering) ; Feedforward ; Fuzzy logic ; Humans ; Machine Learning ; Mathematical models ; Matlab ; Methods ; Models, Theoretical ; Motors ; Neural networks ; Neural Networks (Computer) ; Parameter estimation ; Real time ; Real-time control ; Real-time systems ; Sensors ; Solar power generation</subject><ispartof>Computational Intelligence and Neuroscience, 2016-01, Vol.2016 (2016), p.419-431</ispartof><rights>Copyright © 2016 Mehmet Şimşir et al.</rights><rights>COPYRIGHT 2015 John Wiley &amp; Sons, Inc.</rights><rights>COPYRIGHT 2016 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2016 Mehmet Simsir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2016 Mehmet Şimşir et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a722t-65dbaa37a4f17dca4e003fd653c91c1dbddddcc03a197234ae1a07bb3bb546ce3</citedby><cites>FETCH-LOGICAL-a722t-65dbaa37a4f17dca4e003fd653c91c1dbddddcc03a197234ae1a07bb3bb546ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706884/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706884/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26819590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schmuker, Michael</contributor><creatorcontrib>Shmshir, Muhammad</creatorcontrib><creatorcontrib>Uyaroğlu, Yılmaz</creatorcontrib><creatorcontrib>Bayır, Raif</creatorcontrib><title>Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network</title><title>Computational Intelligence and Neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors) encounter previously defined and undefined faults under operation. It may inevitably lead to the interruption of the electromechanical system operation; hence, economic losses take place at certain times. Therefore, in order to maintain system operation sustainability, the motor should be precisely monitored and the faults are diagnosed considering various significant motor parameters. In this study, the artificial feedforward backpropagation neural network approach is proposed to real-time monitor and diagnose the faults of the hub motor by measuring seven main system parameters. So as to construct a necessary model, we trained the model, using a data set consisting of 4160 samples where each has 7 parameters, by the MATLAB environment until the best model is obtained. The results are encouraging and meaningful for the specific motor and the developed model may be applicable to other types of hub motors. The prosperous model of the whole system was embedded into Arduino Due microcontroller card and the mobile real-time monitoring and fault diagnosis system prototype for hub motor was designed and manufactured.</description><subject>Algorithms</subject><subject>Back propagation</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Computer Simulation</subject><subject>Datasets</subject><subject>Electric motors</subject><subject>Electric Power Supplies</subject><subject>Electronics</subject><subject>Evaluation</subject><subject>Fault diagnosis</subject><subject>Fault location (Engineering)</subject><subject>Feedforward</subject><subject>Fuzzy logic</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Motors</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Parameter estimation</subject><subject>Real time</subject><subject>Real-time control</subject><subject>Real-time systems</subject><subject>Sensors</subject><subject>Solar power generation</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0s9v0zAUB_AIgdgPuHFGlrggjTI__4wvk6ZBGVKBCW1n6yVxOo80HnZCxX-Pu5Zu44Cay0vkj7-On15RvAL6HkDKY0ZBHWtghmv1pNgHVeqJZJo_3b4ruVccpHRDqdSSsufFHlMlGGnoflF9d9hNLv3CkS-h90OIvp8T7BsyxbEbyAeP8z4kn0hoCZJZWJKLsHSRnI9V3pE9uUqrLVPnmjbEJcaGfHVjxC6XYRnijxfFsxa75F5u6mFxNf14eXY-mX379PnsdDZBzdgwUbKpELlG0YJuahSOUt42SvLaQA1N1eSnrilHMJpxgQ6Q6qriVSWFqh0_LE7WubdjtXBN7foh_4W9jX6B8bcN6O3jld5f23n4ZYWmqixFDni7CYjh5-jSYBc-1a7rsHdhTBZ0qaBUXO1CFeNKQkl3oSAUaFpm-uYfehPG2OemZSWlKJURcK_m2Dnr-zbk29SrUHsqgYoyn6r_q4RizBiheFbv1qqOIaXo2m27gNrVeNnVeNnNeGX--mGLt_jvPGVwtAbXvm9w6XeMc9m4Fh9oY7SQGczWAH30g79vx8Uqh-Yxp5TdZcJd0dQAp7k-_hBgrODA_wCIZfMZ</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Shmshir, Muhammad</creator><creator>Uyaroğlu, Yılmaz</creator><creator>Bayır, Raif</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network</title><author>Shmshir, Muhammad ; Uyaroğlu, Yılmaz ; Bayır, Raif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a722t-65dbaa37a4f17dca4e003fd653c91c1dbddddcc03a197234ae1a07bb3bb546ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Back propagation</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Computer Simulation</topic><topic>Datasets</topic><topic>Electric motors</topic><topic>Electric Power Supplies</topic><topic>Electronics</topic><topic>Evaluation</topic><topic>Fault diagnosis</topic><topic>Fault location (Engineering)</topic><topic>Feedforward</topic><topic>Fuzzy logic</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Motors</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Parameter estimation</topic><topic>Real time</topic><topic>Real-time control</topic><topic>Real-time systems</topic><topic>Sensors</topic><topic>Solar power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shmshir, Muhammad</creatorcontrib><creatorcontrib>Uyaroğlu, Yılmaz</creatorcontrib><creatorcontrib>Bayır, Raif</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational Intelligence and Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shmshir, Muhammad</au><au>Uyaroğlu, Yılmaz</au><au>Bayır, Raif</au><au>Schmuker, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network</atitle><jtitle>Computational Intelligence and Neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>419</spage><epage>431</epage><pages>419-431</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors) encounter previously defined and undefined faults under operation. It may inevitably lead to the interruption of the electromechanical system operation; hence, economic losses take place at certain times. Therefore, in order to maintain system operation sustainability, the motor should be precisely monitored and the faults are diagnosed considering various significant motor parameters. In this study, the artificial feedforward backpropagation neural network approach is proposed to real-time monitor and diagnose the faults of the hub motor by measuring seven main system parameters. So as to construct a necessary model, we trained the model, using a data set consisting of 4160 samples where each has 7 parameters, by the MATLAB environment until the best model is obtained. The results are encouraging and meaningful for the specific motor and the developed model may be applicable to other types of hub motors. The prosperous model of the whole system was embedded into Arduino Due microcontroller card and the mobile real-time monitoring and fault diagnosis system prototype for hub motor was designed and manufactured.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><pmid>26819590</pmid><doi>10.1155/2016/7129376</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational Intelligence and Neuroscience, 2016-01, Vol.2016 (2016), p.419-431
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4706884
source MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Back propagation
CAD
Computer aided design
Computer Simulation
Datasets
Electric motors
Electric Power Supplies
Electronics
Evaluation
Fault diagnosis
Fault location (Engineering)
Feedforward
Fuzzy logic
Humans
Machine Learning
Mathematical models
Matlab
Methods
Models, Theoretical
Motors
Neural networks
Neural Networks (Computer)
Parameter estimation
Real time
Real-time control
Real-time systems
Sensors
Solar power generation
title Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Monitoring%20and%20Fault%20Diagnosis%20of%20a%20Low%20Power%20Hub%20Motor%20Using%20Feedforward%20Neural%20Network&rft.jtitle=Computational%20Intelligence%20and%20Neuroscience&rft.au=Shmshir,%20Muhammad&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=419&rft.epage=431&rft.pages=419-431&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2016/7129376&rft_dat=%3Cgale_pubme%3EA462299463%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1755486941&rft_id=info:pmid/26819590&rft_galeid=A462299463&rft_airiti_id=P20160527002_201612_201709130017_201709130017_419_431&rfr_iscdi=true