Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations

A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability is primarily driven by biologica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational Intelligence and Neuroscience 2016-01, Vol.2016 (2016), p.158-166
Hauptverfasser: Bayler, Eric, Mehra, Avichal, Nadiga, Sudhir, Krasnopolsky, Vladimir M., Behringer, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 2016
container_start_page 158
container_title Computational Intelligence and Neuroscience
container_volume 2016
creator Bayler, Eric
Mehra, Avichal
Nadiga, Sudhir
Krasnopolsky, Vladimir M.
Behringer, David
description A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA’s operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed—signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN’s generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series.
doi_str_mv 10.1155/2016/6156513
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4706868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A462299444</galeid><airiti_id>P20160527002_201612_201709130017_201709130017_158_166</airiti_id><sourcerecordid>A462299444</sourcerecordid><originalsourceid>FETCH-LOGICAL-a662t-c19e6d71e77efbb428de7b19bef775fbdbc65731ba94365381678607e1510a2f3</originalsourceid><addsrcrecordid>eNqNks1vEzEQxVcIREvhxhlZ4oIEoR7veuztASmKaEEKDRLlbHk3s4nLZh3sTSv-e5wPQsoB5TS256fnmaeXZS-BvweQ8lxwwHMEiRLyR9kpoFYDKVT-eH9GeZI9i_GWc6kkF0-zE4EaSqnxNFtc0yrYll1Tf-_Dj8huqJ537ueKWOMDu3Rt67oZu7LLyFzHvtme0ktP7AvZuAq0oK6PF2y4XLautr3zHes9m9RkOzbybZKYVJHC3aYVn2dPGttGerGrZ9n3y483o0-D8eTq82g4HlhE0Q9qKAmnCkgpaqqqEHpKqoKyokYp2VTTqkapcqhsWeQocw2oNHJFIIFb0eRn2Yet7nJVLWhapyHTkmYZ3MKGX8ZbZx52Ojc3M39nCsVRo04Cb3YCwScvYm8WLtZpdduRX0UD6T_QKI5CUaQhVRr4CBQKlFryhL7-B731q9Al0xIlZaGxLA6omW3JuK7xaZt6LWqGyYpCpznlf6kChSjLoigS9W5L1cHHGKjZ2wXcrJNm1kkzu6Ql_NWhxXv4T7QS8HYLzF03tffuSDlKDDX2gC5LJSAB4y1gXXC9-2vH17UOT4nnXGw0YVMULyHnqT68gNQGEPPfp0T3Hg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755486940</pqid></control><display><type>article</type><title>Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bayler, Eric ; Mehra, Avichal ; Nadiga, Sudhir ; Krasnopolsky, Vladimir M. ; Behringer, David</creator><contributor>Hernandez, José Alfredo</contributor><creatorcontrib>Bayler, Eric ; Mehra, Avichal ; Nadiga, Sudhir ; Krasnopolsky, Vladimir M. ; Behringer, David ; Hernandez, José Alfredo</creatorcontrib><description>A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA’s operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed—signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN’s generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2016/6156513</identifier><identifier>PMID: 26819586</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Algorithms ; Approximation ; Biogeochemistry ; Chlorophyll ; Color ; Colorimetry - methods ; Computation ; Environmental Monitoring ; Humans ; Intelligence ; Inverse problems ; Jacobians ; Linear Models ; Methods ; Neural networks ; Neural Networks (Computer) ; NOAA ; Ocean ; Ocean color ; Oceans and Seas ; Plankton ; Remote sensing ; Reproducibility of Results ; Satellite Imagery ; Satellite imaging ; Satellites ; Technology application ; Variables ; Weight reduction</subject><ispartof>Computational Intelligence and Neuroscience, 2016-01, Vol.2016 (2016), p.158-166</ispartof><rights>Copyright © 2016 Vladimir Krasnopolsky et al.</rights><rights>COPYRIGHT 2015 John Wiley &amp; Sons, Inc.</rights><rights>COPYRIGHT 2016 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2016 Vladimir Krasnopolsky et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2016 Vladimir Krasnopolsky et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a662t-c19e6d71e77efbb428de7b19bef775fbdbc65731ba94365381678607e1510a2f3</citedby><cites>FETCH-LOGICAL-a662t-c19e6d71e77efbb428de7b19bef775fbdbc65731ba94365381678607e1510a2f3</cites><orcidid>0000-0003-0848-4161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706868/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706868/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26819586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hernandez, José Alfredo</contributor><creatorcontrib>Bayler, Eric</creatorcontrib><creatorcontrib>Mehra, Avichal</creatorcontrib><creatorcontrib>Nadiga, Sudhir</creatorcontrib><creatorcontrib>Krasnopolsky, Vladimir M.</creatorcontrib><creatorcontrib>Behringer, David</creatorcontrib><title>Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations</title><title>Computational Intelligence and Neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA’s operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed—signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN’s generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Biogeochemistry</subject><subject>Chlorophyll</subject><subject>Color</subject><subject>Colorimetry - methods</subject><subject>Computation</subject><subject>Environmental Monitoring</subject><subject>Humans</subject><subject>Intelligence</subject><subject>Inverse problems</subject><subject>Jacobians</subject><subject>Linear Models</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>NOAA</subject><subject>Ocean</subject><subject>Ocean color</subject><subject>Oceans and Seas</subject><subject>Plankton</subject><subject>Remote sensing</subject><subject>Reproducibility of Results</subject><subject>Satellite Imagery</subject><subject>Satellite imaging</subject><subject>Satellites</subject><subject>Technology application</subject><subject>Variables</subject><subject>Weight reduction</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks1vEzEQxVcIREvhxhlZ4oIEoR7veuztASmKaEEKDRLlbHk3s4nLZh3sTSv-e5wPQsoB5TS256fnmaeXZS-BvweQ8lxwwHMEiRLyR9kpoFYDKVT-eH9GeZI9i_GWc6kkF0-zE4EaSqnxNFtc0yrYll1Tf-_Dj8huqJ537ueKWOMDu3Rt67oZu7LLyFzHvtme0ktP7AvZuAq0oK6PF2y4XLautr3zHes9m9RkOzbybZKYVJHC3aYVn2dPGttGerGrZ9n3y483o0-D8eTq82g4HlhE0Q9qKAmnCkgpaqqqEHpKqoKyokYp2VTTqkapcqhsWeQocw2oNHJFIIFb0eRn2Yet7nJVLWhapyHTkmYZ3MKGX8ZbZx52Ojc3M39nCsVRo04Cb3YCwScvYm8WLtZpdduRX0UD6T_QKI5CUaQhVRr4CBQKlFryhL7-B731q9Al0xIlZaGxLA6omW3JuK7xaZt6LWqGyYpCpznlf6kChSjLoigS9W5L1cHHGKjZ2wXcrJNm1kkzu6Ql_NWhxXv4T7QS8HYLzF03tffuSDlKDDX2gC5LJSAB4y1gXXC9-2vH17UOT4nnXGw0YVMULyHnqT68gNQGEPPfp0T3Hg</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Bayler, Eric</creator><creator>Mehra, Avichal</creator><creator>Nadiga, Sudhir</creator><creator>Krasnopolsky, Vladimir M.</creator><creator>Behringer, David</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0848-4161</orcidid></search><sort><creationdate>20160101</creationdate><title>Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations</title><author>Bayler, Eric ; Mehra, Avichal ; Nadiga, Sudhir ; Krasnopolsky, Vladimir M. ; Behringer, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a662t-c19e6d71e77efbb428de7b19bef775fbdbc65731ba94365381678607e1510a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Biogeochemistry</topic><topic>Chlorophyll</topic><topic>Color</topic><topic>Colorimetry - methods</topic><topic>Computation</topic><topic>Environmental Monitoring</topic><topic>Humans</topic><topic>Intelligence</topic><topic>Inverse problems</topic><topic>Jacobians</topic><topic>Linear Models</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>NOAA</topic><topic>Ocean</topic><topic>Ocean color</topic><topic>Oceans and Seas</topic><topic>Plankton</topic><topic>Remote sensing</topic><topic>Reproducibility of Results</topic><topic>Satellite Imagery</topic><topic>Satellite imaging</topic><topic>Satellites</topic><topic>Technology application</topic><topic>Variables</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayler, Eric</creatorcontrib><creatorcontrib>Mehra, Avichal</creatorcontrib><creatorcontrib>Nadiga, Sudhir</creatorcontrib><creatorcontrib>Krasnopolsky, Vladimir M.</creatorcontrib><creatorcontrib>Behringer, David</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational Intelligence and Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayler, Eric</au><au>Mehra, Avichal</au><au>Nadiga, Sudhir</au><au>Krasnopolsky, Vladimir M.</au><au>Behringer, David</au><au>Hernandez, José Alfredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations</atitle><jtitle>Computational Intelligence and Neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>158</spage><epage>166</epage><pages>158-166</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA’s operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed—signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN’s generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><pmid>26819586</pmid><doi>10.1155/2016/6156513</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0848-4161</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational Intelligence and Neuroscience, 2016-01, Vol.2016 (2016), p.158-166
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4706868
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Approximation
Biogeochemistry
Chlorophyll
Color
Colorimetry - methods
Computation
Environmental Monitoring
Humans
Intelligence
Inverse problems
Jacobians
Linear Models
Methods
Neural networks
Neural Networks (Computer)
NOAA
Ocean
Ocean color
Oceans and Seas
Plankton
Remote sensing
Reproducibility of Results
Satellite Imagery
Satellite imaging
Satellites
Technology application
Variables
Weight reduction
title Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Networks%20Technique%20for%20Filling%20Gaps%20in%20Satellite%20Measurements:%20Application%20to%20Ocean%20Color%20Observations&rft.jtitle=Computational%20Intelligence%20and%20Neuroscience&rft.au=Bayler,%20Eric&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=158&rft.epage=166&rft.pages=158-166&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2016/6156513&rft_dat=%3Cgale_pubme%3EA462299444%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1755486940&rft_id=info:pmid/26819586&rft_galeid=A462299444&rft_airiti_id=P20160527002_201612_201709130017_201709130017_158_166&rfr_iscdi=true