Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations
A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability is primarily driven by biologica...
Gespeichert in:
Veröffentlicht in: | Computational Intelligence and Neuroscience 2016-01, Vol.2016 (2016), p.158-166 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166 |
---|---|
container_issue | 2016 |
container_start_page | 158 |
container_title | Computational Intelligence and Neuroscience |
container_volume | 2016 |
creator | Bayler, Eric Mehra, Avichal Nadiga, Sudhir Krasnopolsky, Vladimir M. Behringer, David |
description | A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA’s operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed—signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN’s generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series. |
doi_str_mv | 10.1155/2016/6156513 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4706868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A462299444</galeid><airiti_id>P20160527002_201612_201709130017_201709130017_158_166</airiti_id><sourcerecordid>A462299444</sourcerecordid><originalsourceid>FETCH-LOGICAL-a662t-c19e6d71e77efbb428de7b19bef775fbdbc65731ba94365381678607e1510a2f3</originalsourceid><addsrcrecordid>eNqNks1vEzEQxVcIREvhxhlZ4oIEoR7veuztASmKaEEKDRLlbHk3s4nLZh3sTSv-e5wPQsoB5TS256fnmaeXZS-BvweQ8lxwwHMEiRLyR9kpoFYDKVT-eH9GeZI9i_GWc6kkF0-zE4EaSqnxNFtc0yrYll1Tf-_Dj8huqJ537ueKWOMDu3Rt67oZu7LLyFzHvtme0ktP7AvZuAq0oK6PF2y4XLautr3zHes9m9RkOzbybZKYVJHC3aYVn2dPGttGerGrZ9n3y483o0-D8eTq82g4HlhE0Q9qKAmnCkgpaqqqEHpKqoKyokYp2VTTqkapcqhsWeQocw2oNHJFIIFb0eRn2Yet7nJVLWhapyHTkmYZ3MKGX8ZbZx52Ojc3M39nCsVRo04Cb3YCwScvYm8WLtZpdduRX0UD6T_QKI5CUaQhVRr4CBQKlFryhL7-B731q9Al0xIlZaGxLA6omW3JuK7xaZt6LWqGyYpCpznlf6kChSjLoigS9W5L1cHHGKjZ2wXcrJNm1kkzu6Ql_NWhxXv4T7QS8HYLzF03tffuSDlKDDX2gC5LJSAB4y1gXXC9-2vH17UOT4nnXGw0YVMULyHnqT68gNQGEPPfp0T3Hg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755486940</pqid></control><display><type>article</type><title>Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bayler, Eric ; Mehra, Avichal ; Nadiga, Sudhir ; Krasnopolsky, Vladimir M. ; Behringer, David</creator><contributor>Hernandez, José Alfredo</contributor><creatorcontrib>Bayler, Eric ; Mehra, Avichal ; Nadiga, Sudhir ; Krasnopolsky, Vladimir M. ; Behringer, David ; Hernandez, José Alfredo</creatorcontrib><description>A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA’s operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed—signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN’s generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2016/6156513</identifier><identifier>PMID: 26819586</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Algorithms ; Approximation ; Biogeochemistry ; Chlorophyll ; Color ; Colorimetry - methods ; Computation ; Environmental Monitoring ; Humans ; Intelligence ; Inverse problems ; Jacobians ; Linear Models ; Methods ; Neural networks ; Neural Networks (Computer) ; NOAA ; Ocean ; Ocean color ; Oceans and Seas ; Plankton ; Remote sensing ; Reproducibility of Results ; Satellite Imagery ; Satellite imaging ; Satellites ; Technology application ; Variables ; Weight reduction</subject><ispartof>Computational Intelligence and Neuroscience, 2016-01, Vol.2016 (2016), p.158-166</ispartof><rights>Copyright © 2016 Vladimir Krasnopolsky et al.</rights><rights>COPYRIGHT 2015 John Wiley & Sons, Inc.</rights><rights>COPYRIGHT 2016 John Wiley & Sons, Inc.</rights><rights>Copyright © 2016 Vladimir Krasnopolsky et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2016 Vladimir Krasnopolsky et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a662t-c19e6d71e77efbb428de7b19bef775fbdbc65731ba94365381678607e1510a2f3</citedby><cites>FETCH-LOGICAL-a662t-c19e6d71e77efbb428de7b19bef775fbdbc65731ba94365381678607e1510a2f3</cites><orcidid>0000-0003-0848-4161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706868/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706868/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26819586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hernandez, José Alfredo</contributor><creatorcontrib>Bayler, Eric</creatorcontrib><creatorcontrib>Mehra, Avichal</creatorcontrib><creatorcontrib>Nadiga, Sudhir</creatorcontrib><creatorcontrib>Krasnopolsky, Vladimir M.</creatorcontrib><creatorcontrib>Behringer, David</creatorcontrib><title>Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations</title><title>Computational Intelligence and Neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA’s operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed—signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN’s generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Biogeochemistry</subject><subject>Chlorophyll</subject><subject>Color</subject><subject>Colorimetry - methods</subject><subject>Computation</subject><subject>Environmental Monitoring</subject><subject>Humans</subject><subject>Intelligence</subject><subject>Inverse problems</subject><subject>Jacobians</subject><subject>Linear Models</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>NOAA</subject><subject>Ocean</subject><subject>Ocean color</subject><subject>Oceans and Seas</subject><subject>Plankton</subject><subject>Remote sensing</subject><subject>Reproducibility of Results</subject><subject>Satellite Imagery</subject><subject>Satellite imaging</subject><subject>Satellites</subject><subject>Technology application</subject><subject>Variables</subject><subject>Weight reduction</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks1vEzEQxVcIREvhxhlZ4oIEoR7veuztASmKaEEKDRLlbHk3s4nLZh3sTSv-e5wPQsoB5TS256fnmaeXZS-BvweQ8lxwwHMEiRLyR9kpoFYDKVT-eH9GeZI9i_GWc6kkF0-zE4EaSqnxNFtc0yrYll1Tf-_Dj8huqJ537ueKWOMDu3Rt67oZu7LLyFzHvtme0ktP7AvZuAq0oK6PF2y4XLautr3zHes9m9RkOzbybZKYVJHC3aYVn2dPGttGerGrZ9n3y483o0-D8eTq82g4HlhE0Q9qKAmnCkgpaqqqEHpKqoKyokYp2VTTqkapcqhsWeQocw2oNHJFIIFb0eRn2Yet7nJVLWhapyHTkmYZ3MKGX8ZbZx52Ojc3M39nCsVRo04Cb3YCwScvYm8WLtZpdduRX0UD6T_QKI5CUaQhVRr4CBQKlFryhL7-B731q9Al0xIlZaGxLA6omW3JuK7xaZt6LWqGyYpCpznlf6kChSjLoigS9W5L1cHHGKjZ2wXcrJNm1kkzu6Ql_NWhxXv4T7QS8HYLzF03tffuSDlKDDX2gC5LJSAB4y1gXXC9-2vH17UOT4nnXGw0YVMULyHnqT68gNQGEPPfp0T3Hg</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Bayler, Eric</creator><creator>Mehra, Avichal</creator><creator>Nadiga, Sudhir</creator><creator>Krasnopolsky, Vladimir M.</creator><creator>Behringer, David</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0848-4161</orcidid></search><sort><creationdate>20160101</creationdate><title>Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations</title><author>Bayler, Eric ; Mehra, Avichal ; Nadiga, Sudhir ; Krasnopolsky, Vladimir M. ; Behringer, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a662t-c19e6d71e77efbb428de7b19bef775fbdbc65731ba94365381678607e1510a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Biogeochemistry</topic><topic>Chlorophyll</topic><topic>Color</topic><topic>Colorimetry - methods</topic><topic>Computation</topic><topic>Environmental Monitoring</topic><topic>Humans</topic><topic>Intelligence</topic><topic>Inverse problems</topic><topic>Jacobians</topic><topic>Linear Models</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>NOAA</topic><topic>Ocean</topic><topic>Ocean color</topic><topic>Oceans and Seas</topic><topic>Plankton</topic><topic>Remote sensing</topic><topic>Reproducibility of Results</topic><topic>Satellite Imagery</topic><topic>Satellite imaging</topic><topic>Satellites</topic><topic>Technology application</topic><topic>Variables</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayler, Eric</creatorcontrib><creatorcontrib>Mehra, Avichal</creatorcontrib><creatorcontrib>Nadiga, Sudhir</creatorcontrib><creatorcontrib>Krasnopolsky, Vladimir M.</creatorcontrib><creatorcontrib>Behringer, David</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational Intelligence and Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayler, Eric</au><au>Mehra, Avichal</au><au>Nadiga, Sudhir</au><au>Krasnopolsky, Vladimir M.</au><au>Behringer, David</au><au>Hernandez, José Alfredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations</atitle><jtitle>Computational Intelligence and Neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>158</spage><epage>166</epage><pages>158-166</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA’s operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed—signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN’s generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><pmid>26819586</pmid><doi>10.1155/2016/6156513</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0848-4161</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5265 |
ispartof | Computational Intelligence and Neuroscience, 2016-01, Vol.2016 (2016), p.158-166 |
issn | 1687-5265 1687-5273 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4706868 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Approximation Biogeochemistry Chlorophyll Color Colorimetry - methods Computation Environmental Monitoring Humans Intelligence Inverse problems Jacobians Linear Models Methods Neural networks Neural Networks (Computer) NOAA Ocean Ocean color Oceans and Seas Plankton Remote sensing Reproducibility of Results Satellite Imagery Satellite imaging Satellites Technology application Variables Weight reduction |
title | Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Networks%20Technique%20for%20Filling%20Gaps%20in%20Satellite%20Measurements:%20Application%20to%20Ocean%20Color%20Observations&rft.jtitle=Computational%20Intelligence%20and%20Neuroscience&rft.au=Bayler,%20Eric&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=158&rft.epage=166&rft.pages=158-166&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2016/6156513&rft_dat=%3Cgale_pubme%3EA462299444%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1755486940&rft_id=info:pmid/26819586&rft_galeid=A462299444&rft_airiti_id=P20160527002_201612_201709130017_201709130017_158_166&rfr_iscdi=true |