Noninvasive tracking of gene transcript and neuroprotection after gene therapy

Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 2016-01, Vol.23 (1), p.1-9
Hauptverfasser: Ren, J, Chen, Y I, Liu, C H, Chen, P-C, Prentice, H, Wu, J-Y, Liu, P K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 1
container_title Gene therapy
container_volume 23
creator Ren, J
Chen, Y I
Liu, C H
Chen, P-C
Prentice, H
Wu, J-Y
Liu, P K
description Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogenous genes from such therapy can generally not be applicable to monitor effects over the long term because they are invasive. We report here that human granulocyte colony-stimulating factor (hG-CSF) complimentary DNA (cDNA) encoded in self-complementary adeno-associated virus-type 2 adeno-associated virus, as delivered through eye drops at multiple time points after cerebral ischemia using bilateral carotid occlusion for 60 min (BCAO-60) led to significant reduction in mortality rates, cerebral atrophy and neurological deficits in C57black6 mice. Most importantly, we validated hG-CSF cDNA expression using translatable magnetic resonance imaging (MRI) in living brains. This noninvasive approach for monitoring exogenous gene expression in the brains has potential for great impact in the area of experimental gene therapy in animal models of heart attack, stroke, Alzheimer’s dementia, Parkinson’s disorder and amyotrophic lateral sclerosis, and the translation of such techniques to emergency medicine.
doi_str_mv 10.1038/gt.2015.81
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4706495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A440058804</galeid><sourcerecordid>A440058804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c770t-68867006080a08335a97d46b7802a55d5a92e8f5bd13b19c08131ec071da1bb63</originalsourceid><addsrcrecordid>eNqNktuL1DAUh4so7rj64h8gBUG8MONJm1tfhGXxsrCs4OU5pO1pJ2snGZN0cP97U2dcZ1RWyUNI8uXjcM4vyx4SWBAo5cs-LgogbCHJrWxGqOBzRnlxO5tBxau5IIU8yu6FcAkAVMjibnZU8AJEVbJZdnHhrLEbHcwG8-h188XYPndd3qP9cWFD48065tq2ucXRu7V3EZtonM11F9HvyCV6vb66n93p9BDwwW4_zj6_ef3p9N38_P3bs9OT83kjBMQ5l5ILAA4SNMiyZLoSLeW1kFBoxtp0LlB2rG5JWZOqAUlKgg0I0mpS17w8zl5tveuxXmHboE2lDmrtzUr7K-W0UYcv1ixV7zaKCuC0YknwdCfw7uuIIaqVCQ0Og7boxqCI4KySwCj5HxQkKzidrI9_Qy_d6G3qRKIYhZILUfyiej2gMrZzU-MnqTrhLLUlYexGilIAJiXQRC3-QqXV4so0zmJn0v3Bh2cHHxIT8Vvs9RiCOvv44bCEf7H73id77BL1EJfBDeMUlHAovRHcNz7fgo13IXjsrsdLQE3BV31UU_CVnIb0aD8Q1-jPpCfgxRYI6cn26PdG86fuO1afBX8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1754036772</pqid></control><display><type>article</type><title>Noninvasive tracking of gene transcript and neuroprotection after gene therapy</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ren, J ; Chen, Y I ; Liu, C H ; Chen, P-C ; Prentice, H ; Wu, J-Y ; Liu, P K</creator><creatorcontrib>Ren, J ; Chen, Y I ; Liu, C H ; Chen, P-C ; Prentice, H ; Wu, J-Y ; Liu, P K</creatorcontrib><description>Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogenous genes from such therapy can generally not be applicable to monitor effects over the long term because they are invasive. We report here that human granulocyte colony-stimulating factor (hG-CSF) complimentary DNA (cDNA) encoded in self-complementary adeno-associated virus-type 2 adeno-associated virus, as delivered through eye drops at multiple time points after cerebral ischemia using bilateral carotid occlusion for 60 min (BCAO-60) led to significant reduction in mortality rates, cerebral atrophy and neurological deficits in C57black6 mice. Most importantly, we validated hG-CSF cDNA expression using translatable magnetic resonance imaging (MRI) in living brains. This noninvasive approach for monitoring exogenous gene expression in the brains has potential for great impact in the area of experimental gene therapy in animal models of heart attack, stroke, Alzheimer’s dementia, Parkinson’s disorder and amyotrophic lateral sclerosis, and the translation of such techniques to emergency medicine.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/gt.2015.81</identifier><identifier>PMID: 26207935</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 42/41 ; 45/71 ; 59/57 ; 631/1647/2300 ; 631/61/51/201 ; 64/60 ; 692/308/575 ; 692/699/375 ; 82/51 ; 96/44 ; Adeno-associated virus ; Alzheimer's disease ; Animals ; Biological products ; Biomedical and Life Sciences ; Biomedicine ; Brain - metabolism ; Brain Ischemia - pathology ; Brain Ischemia - therapy ; Care and treatment ; Cell Biology ; Cerebrum - pathology ; Dependovirus - genetics ; Dependoviruses ; Disease Models, Animal ; DNA, Complementary - genetics ; DNA, Complementary - metabolism ; Gene Expression ; Gene Expression Regulation ; Gene Therapy ; Genetic aspects ; Genetic research ; Genetic Therapy - methods ; Genetic Vectors ; Granulocyte colony-stimulating factor ; Granulocyte Colony-Stimulating Factor - genetics ; Granulocyte Colony-Stimulating Factor - metabolism ; Health aspects ; Human Genetics ; Humans ; Immunohistochemistry ; Ischemia ; Magnetic Resonance Imaging ; Male ; Methods ; Mice ; Mice, Inbred C57BL ; Nanotechnology ; Neuroprotection ; Ophthalmic Solutions ; original-article-enabling-technologies ; Patient outcomes ; PC12 Cells ; Phosphorothioate Oligonucleotides - genetics ; Rats ; Transcription factors</subject><ispartof>Gene therapy, 2016-01, Vol.23 (1), p.1-9</ispartof><rights>Macmillan Publishers Limited 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c770t-68867006080a08335a97d46b7802a55d5a92e8f5bd13b19c08131ec071da1bb63</citedby><cites>FETCH-LOGICAL-c770t-68867006080a08335a97d46b7802a55d5a92e8f5bd13b19c08131ec071da1bb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/gt.2015.81$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/gt.2015.81$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26207935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, J</creatorcontrib><creatorcontrib>Chen, Y I</creatorcontrib><creatorcontrib>Liu, C H</creatorcontrib><creatorcontrib>Chen, P-C</creatorcontrib><creatorcontrib>Prentice, H</creatorcontrib><creatorcontrib>Wu, J-Y</creatorcontrib><creatorcontrib>Liu, P K</creatorcontrib><title>Noninvasive tracking of gene transcript and neuroprotection after gene therapy</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogenous genes from such therapy can generally not be applicable to monitor effects over the long term because they are invasive. We report here that human granulocyte colony-stimulating factor (hG-CSF) complimentary DNA (cDNA) encoded in self-complementary adeno-associated virus-type 2 adeno-associated virus, as delivered through eye drops at multiple time points after cerebral ischemia using bilateral carotid occlusion for 60 min (BCAO-60) led to significant reduction in mortality rates, cerebral atrophy and neurological deficits in C57black6 mice. Most importantly, we validated hG-CSF cDNA expression using translatable magnetic resonance imaging (MRI) in living brains. This noninvasive approach for monitoring exogenous gene expression in the brains has potential for great impact in the area of experimental gene therapy in animal models of heart attack, stroke, Alzheimer’s dementia, Parkinson’s disorder and amyotrophic lateral sclerosis, and the translation of such techniques to emergency medicine.</description><subject>38/39</subject><subject>42/41</subject><subject>45/71</subject><subject>59/57</subject><subject>631/1647/2300</subject><subject>631/61/51/201</subject><subject>64/60</subject><subject>692/308/575</subject><subject>692/699/375</subject><subject>82/51</subject><subject>96/44</subject><subject>Adeno-associated virus</subject><subject>Alzheimer's disease</subject><subject>Animals</subject><subject>Biological products</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - metabolism</subject><subject>Brain Ischemia - pathology</subject><subject>Brain Ischemia - therapy</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cerebrum - pathology</subject><subject>Dependovirus - genetics</subject><subject>Dependoviruses</subject><subject>Disease Models, Animal</subject><subject>DNA, Complementary - genetics</subject><subject>DNA, Complementary - metabolism</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation</subject><subject>Gene Therapy</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetic Therapy - methods</subject><subject>Genetic Vectors</subject><subject>Granulocyte colony-stimulating factor</subject><subject>Granulocyte Colony-Stimulating Factor - genetics</subject><subject>Granulocyte Colony-Stimulating Factor - metabolism</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Ischemia</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nanotechnology</subject><subject>Neuroprotection</subject><subject>Ophthalmic Solutions</subject><subject>original-article-enabling-technologies</subject><subject>Patient outcomes</subject><subject>PC12 Cells</subject><subject>Phosphorothioate Oligonucleotides - genetics</subject><subject>Rats</subject><subject>Transcription factors</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNktuL1DAUh4so7rj64h8gBUG8MONJm1tfhGXxsrCs4OU5pO1pJ2snGZN0cP97U2dcZ1RWyUNI8uXjcM4vyx4SWBAo5cs-LgogbCHJrWxGqOBzRnlxO5tBxau5IIU8yu6FcAkAVMjibnZU8AJEVbJZdnHhrLEbHcwG8-h188XYPndd3qP9cWFD48065tq2ucXRu7V3EZtonM11F9HvyCV6vb66n93p9BDwwW4_zj6_ef3p9N38_P3bs9OT83kjBMQ5l5ILAA4SNMiyZLoSLeW1kFBoxtp0LlB2rG5JWZOqAUlKgg0I0mpS17w8zl5tveuxXmHboE2lDmrtzUr7K-W0UYcv1ixV7zaKCuC0YknwdCfw7uuIIaqVCQ0Og7boxqCI4KySwCj5HxQkKzidrI9_Qy_d6G3qRKIYhZILUfyiej2gMrZzU-MnqTrhLLUlYexGilIAJiXQRC3-QqXV4so0zmJn0v3Bh2cHHxIT8Vvs9RiCOvv44bCEf7H73id77BL1EJfBDeMUlHAovRHcNz7fgo13IXjsrsdLQE3BV31UU_CVnIb0aD8Q1-jPpCfgxRYI6cn26PdG86fuO1afBX8</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Ren, J</creator><creator>Chen, Y I</creator><creator>Liu, C H</creator><creator>Chen, P-C</creator><creator>Prentice, H</creator><creator>Wu, J-Y</creator><creator>Liu, P K</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Noninvasive tracking of gene transcript and neuroprotection after gene therapy</title><author>Ren, J ; Chen, Y I ; Liu, C H ; Chen, P-C ; Prentice, H ; Wu, J-Y ; Liu, P K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c770t-68867006080a08335a97d46b7802a55d5a92e8f5bd13b19c08131ec071da1bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>38/39</topic><topic>42/41</topic><topic>45/71</topic><topic>59/57</topic><topic>631/1647/2300</topic><topic>631/61/51/201</topic><topic>64/60</topic><topic>692/308/575</topic><topic>692/699/375</topic><topic>82/51</topic><topic>96/44</topic><topic>Adeno-associated virus</topic><topic>Alzheimer's disease</topic><topic>Animals</topic><topic>Biological products</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - metabolism</topic><topic>Brain Ischemia - pathology</topic><topic>Brain Ischemia - therapy</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cerebrum - pathology</topic><topic>Dependovirus - genetics</topic><topic>Dependoviruses</topic><topic>Disease Models, Animal</topic><topic>DNA, Complementary - genetics</topic><topic>DNA, Complementary - metabolism</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation</topic><topic>Gene Therapy</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetic Therapy - methods</topic><topic>Genetic Vectors</topic><topic>Granulocyte colony-stimulating factor</topic><topic>Granulocyte Colony-Stimulating Factor - genetics</topic><topic>Granulocyte Colony-Stimulating Factor - metabolism</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Ischemia</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nanotechnology</topic><topic>Neuroprotection</topic><topic>Ophthalmic Solutions</topic><topic>original-article-enabling-technologies</topic><topic>Patient outcomes</topic><topic>PC12 Cells</topic><topic>Phosphorothioate Oligonucleotides - genetics</topic><topic>Rats</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, J</creatorcontrib><creatorcontrib>Chen, Y I</creatorcontrib><creatorcontrib>Liu, C H</creatorcontrib><creatorcontrib>Chen, P-C</creatorcontrib><creatorcontrib>Prentice, H</creatorcontrib><creatorcontrib>Wu, J-Y</creatorcontrib><creatorcontrib>Liu, P K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, J</au><au>Chen, Y I</au><au>Liu, C H</au><au>Chen, P-C</au><au>Prentice, H</au><au>Wu, J-Y</au><au>Liu, P K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive tracking of gene transcript and neuroprotection after gene therapy</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>23</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogenous genes from such therapy can generally not be applicable to monitor effects over the long term because they are invasive. We report here that human granulocyte colony-stimulating factor (hG-CSF) complimentary DNA (cDNA) encoded in self-complementary adeno-associated virus-type 2 adeno-associated virus, as delivered through eye drops at multiple time points after cerebral ischemia using bilateral carotid occlusion for 60 min (BCAO-60) led to significant reduction in mortality rates, cerebral atrophy and neurological deficits in C57black6 mice. Most importantly, we validated hG-CSF cDNA expression using translatable magnetic resonance imaging (MRI) in living brains. This noninvasive approach for monitoring exogenous gene expression in the brains has potential for great impact in the area of experimental gene therapy in animal models of heart attack, stroke, Alzheimer’s dementia, Parkinson’s disorder and amyotrophic lateral sclerosis, and the translation of such techniques to emergency medicine.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26207935</pmid><doi>10.1038/gt.2015.81</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-7128
ispartof Gene therapy, 2016-01, Vol.23 (1), p.1-9
issn 0969-7128
1476-5462
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4706495
source MEDLINE; Springer Nature - Complete Springer Journals
subjects 38/39
42/41
45/71
59/57
631/1647/2300
631/61/51/201
64/60
692/308/575
692/699/375
82/51
96/44
Adeno-associated virus
Alzheimer's disease
Animals
Biological products
Biomedical and Life Sciences
Biomedicine
Brain - metabolism
Brain Ischemia - pathology
Brain Ischemia - therapy
Care and treatment
Cell Biology
Cerebrum - pathology
Dependovirus - genetics
Dependoviruses
Disease Models, Animal
DNA, Complementary - genetics
DNA, Complementary - metabolism
Gene Expression
Gene Expression Regulation
Gene Therapy
Genetic aspects
Genetic research
Genetic Therapy - methods
Genetic Vectors
Granulocyte colony-stimulating factor
Granulocyte Colony-Stimulating Factor - genetics
Granulocyte Colony-Stimulating Factor - metabolism
Health aspects
Human Genetics
Humans
Immunohistochemistry
Ischemia
Magnetic Resonance Imaging
Male
Methods
Mice
Mice, Inbred C57BL
Nanotechnology
Neuroprotection
Ophthalmic Solutions
original-article-enabling-technologies
Patient outcomes
PC12 Cells
Phosphorothioate Oligonucleotides - genetics
Rats
Transcription factors
title Noninvasive tracking of gene transcript and neuroprotection after gene therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20tracking%20of%20gene%20transcript%20and%20neuroprotection%20after%20gene%20therapy&rft.jtitle=Gene%20therapy&rft.au=Ren,%20J&rft.date=2016-01-01&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/gt.2015.81&rft_dat=%3Cgale_pubme%3EA440058804%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1754036772&rft_id=info:pmid/26207935&rft_galeid=A440058804&rfr_iscdi=true