Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition

Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ∼30 residues of coiled coils. The str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2015-12, Vol.290 (49), p.29461-29477
Hauptverfasser: Uchiyama, Susumu, Kawahara, Kazuki, Hosokawa, Yuki, Fukakusa, Shunsuke, Oki, Hiroya, Nakamura, Shota, Kojima, Yukiko, Noda, Masanori, Takino, Rie, Miyahara, Yuya, Maruno, Takahiro, Kobayashi, Yuji, Ohkubo, Tadayasu, Fukui, Kiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29477
container_issue 49
container_start_page 29461
container_title The Journal of biological chemistry
container_volume 290
creator Uchiyama, Susumu
Kawahara, Kazuki
Hosokawa, Yuki
Fukakusa, Shunsuke
Oki, Hiroya
Nakamura, Shota
Kojima, Yukiko
Noda, Masanori
Takino, Rie
Miyahara, Yuya
Maruno, Takahiro
Kobayashi, Yuji
Ohkubo, Tadayasu
Fukui, Kiichi
description Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ∼30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition.
doi_str_mv 10.1074/jbc.M115.670794
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4705948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820395600</els_id><sourcerecordid>26491021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-ce7dab45b7ee57b5e20471ab26d5333ca5c9324b521e11bdd8c33aa5e2880c703</originalsourceid><addsrcrecordid>eNp1kc1uGyEUhVHVqHaSrrureIFxYBjMzKaS6zSJpfwpP1J2iIFrB2sGLMCR-jJ51uBOY6WL3s1d3O-cC_cg9I2SCSWiOlm3enJFKZ9MBRFN9QmNKalZwTh9-ozGhJS0aEpej9BhjGuSq2roFzQqp7nn4Ri93qew1WkbVId_qmgjXvqAT20PAZ_50KtkvcN-iS-2vXJ47p0BF63DH3RXyroETjkNO3L-HHzvo-8B3wafwLqIlTN4kSJe9JvO6j-mw6Z761YdFDGFjIDBp9czfAfar5zdQcfoYKm6CF__9iP0ePbrYX5RXN6cL-azy0JzzlKhQRjVVrwVAFy0HEpSCaracmo4Y0wrrhtWVi0vKVDaGlNrxpTKXF0TLQg7Qj8G38227cFocPlBndwE26vwW3pl5b8TZ5_lyr_IShDeVHU2OBkMdPAxBljutZTIXVQyRyV3Uckhqqz4_nHlnn_PJgPNAED--IuFIKO2kI9sbACdpPH2v-Zvj8SoEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Uchiyama, Susumu ; Kawahara, Kazuki ; Hosokawa, Yuki ; Fukakusa, Shunsuke ; Oki, Hiroya ; Nakamura, Shota ; Kojima, Yukiko ; Noda, Masanori ; Takino, Rie ; Miyahara, Yuya ; Maruno, Takahiro ; Kobayashi, Yuji ; Ohkubo, Tadayasu ; Fukui, Kiichi</creator><creatorcontrib>Uchiyama, Susumu ; Kawahara, Kazuki ; Hosokawa, Yuki ; Fukakusa, Shunsuke ; Oki, Hiroya ; Nakamura, Shota ; Kojima, Yukiko ; Noda, Masanori ; Takino, Rie ; Miyahara, Yuya ; Maruno, Takahiro ; Kobayashi, Yuji ; Ohkubo, Tadayasu ; Fukui, Kiichi</creatorcontrib><description>Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ∼30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.670794</identifier><identifier>PMID: 26491021</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphatases - chemistry ; Amino Acid Sequence ; analytical ultracentrifugation ; Animals ; Area Under Curve ; Bacillus ; Binding Sites ; Calorimetry ; Carrier Proteins - chemistry ; Cell Cycle Proteins - chemistry ; chromatin structure ; Chromosomal Proteins, Non-Histone - chemistry ; chromosomes ; Cloning, Molecular ; Cohesins ; crystal structure ; Crystallography, X-Ray ; DNA - chemistry ; DNA and Chromosomes ; DNA Mutational Analysis ; DNA, Single-Stranded - chemistry ; DNA-Binding Proteins - chemistry ; Humans ; Hydrogen - chemistry ; hydrogen exchange mass spectrometry ; isothermal titration calorimetry (ITC) ; Mass Spectrometry ; Mice ; Molecular Sequence Data ; Multiprotein Complexes - chemistry ; Nuclear Proteins - chemistry ; Protein Binding ; Protein Multimerization ; protein-DNA interaction ; Pyrococcus ; Saccharomyces cerevisiae</subject><ispartof>The Journal of biological chemistry, 2015-12, Vol.290 (49), p.29461-29477</ispartof><rights>2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-ce7dab45b7ee57b5e20471ab26d5333ca5c9324b521e11bdd8c33aa5e2880c703</citedby><cites>FETCH-LOGICAL-c553t-ce7dab45b7ee57b5e20471ab26d5333ca5c9324b521e11bdd8c33aa5e2880c703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705948/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705948/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26491021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uchiyama, Susumu</creatorcontrib><creatorcontrib>Kawahara, Kazuki</creatorcontrib><creatorcontrib>Hosokawa, Yuki</creatorcontrib><creatorcontrib>Fukakusa, Shunsuke</creatorcontrib><creatorcontrib>Oki, Hiroya</creatorcontrib><creatorcontrib>Nakamura, Shota</creatorcontrib><creatorcontrib>Kojima, Yukiko</creatorcontrib><creatorcontrib>Noda, Masanori</creatorcontrib><creatorcontrib>Takino, Rie</creatorcontrib><creatorcontrib>Miyahara, Yuya</creatorcontrib><creatorcontrib>Maruno, Takahiro</creatorcontrib><creatorcontrib>Kobayashi, Yuji</creatorcontrib><creatorcontrib>Ohkubo, Tadayasu</creatorcontrib><creatorcontrib>Fukui, Kiichi</creatorcontrib><title>Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ∼30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Amino Acid Sequence</subject><subject>analytical ultracentrifugation</subject><subject>Animals</subject><subject>Area Under Curve</subject><subject>Bacillus</subject><subject>Binding Sites</subject><subject>Calorimetry</subject><subject>Carrier Proteins - chemistry</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>chromatin structure</subject><subject>Chromosomal Proteins, Non-Histone - chemistry</subject><subject>chromosomes</subject><subject>Cloning, Molecular</subject><subject>Cohesins</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>DNA - chemistry</subject><subject>DNA and Chromosomes</subject><subject>DNA Mutational Analysis</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>Humans</subject><subject>Hydrogen - chemistry</subject><subject>hydrogen exchange mass spectrometry</subject><subject>isothermal titration calorimetry (ITC)</subject><subject>Mass Spectrometry</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Nuclear Proteins - chemistry</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>protein-DNA interaction</subject><subject>Pyrococcus</subject><subject>Saccharomyces cerevisiae</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uGyEUhVHVqHaSrrureIFxYBjMzKaS6zSJpfwpP1J2iIFrB2sGLMCR-jJ51uBOY6WL3s1d3O-cC_cg9I2SCSWiOlm3enJFKZ9MBRFN9QmNKalZwTh9-ozGhJS0aEpej9BhjGuSq2roFzQqp7nn4Ri93qew1WkbVId_qmgjXvqAT20PAZ_50KtkvcN-iS-2vXJ47p0BF63DH3RXyroETjkNO3L-HHzvo-8B3wafwLqIlTN4kSJe9JvO6j-mw6Z761YdFDGFjIDBp9czfAfar5zdQcfoYKm6CF__9iP0ePbrYX5RXN6cL-azy0JzzlKhQRjVVrwVAFy0HEpSCaracmo4Y0wrrhtWVi0vKVDaGlNrxpTKXF0TLQg7Qj8G38227cFocPlBndwE26vwW3pl5b8TZ5_lyr_IShDeVHU2OBkMdPAxBljutZTIXVQyRyV3Uckhqqz4_nHlnn_PJgPNAED--IuFIKO2kI9sbACdpPH2v-Zvj8SoEQ</recordid><startdate>20151204</startdate><enddate>20151204</enddate><creator>Uchiyama, Susumu</creator><creator>Kawahara, Kazuki</creator><creator>Hosokawa, Yuki</creator><creator>Fukakusa, Shunsuke</creator><creator>Oki, Hiroya</creator><creator>Nakamura, Shota</creator><creator>Kojima, Yukiko</creator><creator>Noda, Masanori</creator><creator>Takino, Rie</creator><creator>Miyahara, Yuya</creator><creator>Maruno, Takahiro</creator><creator>Kobayashi, Yuji</creator><creator>Ohkubo, Tadayasu</creator><creator>Fukui, Kiichi</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20151204</creationdate><title>Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition</title><author>Uchiyama, Susumu ; Kawahara, Kazuki ; Hosokawa, Yuki ; Fukakusa, Shunsuke ; Oki, Hiroya ; Nakamura, Shota ; Kojima, Yukiko ; Noda, Masanori ; Takino, Rie ; Miyahara, Yuya ; Maruno, Takahiro ; Kobayashi, Yuji ; Ohkubo, Tadayasu ; Fukui, Kiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-ce7dab45b7ee57b5e20471ab26d5333ca5c9324b521e11bdd8c33aa5e2880c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Amino Acid Sequence</topic><topic>analytical ultracentrifugation</topic><topic>Animals</topic><topic>Area Under Curve</topic><topic>Bacillus</topic><topic>Binding Sites</topic><topic>Calorimetry</topic><topic>Carrier Proteins - chemistry</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>chromatin structure</topic><topic>Chromosomal Proteins, Non-Histone - chemistry</topic><topic>chromosomes</topic><topic>Cloning, Molecular</topic><topic>Cohesins</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>DNA - chemistry</topic><topic>DNA and Chromosomes</topic><topic>DNA Mutational Analysis</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>Humans</topic><topic>Hydrogen - chemistry</topic><topic>hydrogen exchange mass spectrometry</topic><topic>isothermal titration calorimetry (ITC)</topic><topic>Mass Spectrometry</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Nuclear Proteins - chemistry</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>protein-DNA interaction</topic><topic>Pyrococcus</topic><topic>Saccharomyces cerevisiae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uchiyama, Susumu</creatorcontrib><creatorcontrib>Kawahara, Kazuki</creatorcontrib><creatorcontrib>Hosokawa, Yuki</creatorcontrib><creatorcontrib>Fukakusa, Shunsuke</creatorcontrib><creatorcontrib>Oki, Hiroya</creatorcontrib><creatorcontrib>Nakamura, Shota</creatorcontrib><creatorcontrib>Kojima, Yukiko</creatorcontrib><creatorcontrib>Noda, Masanori</creatorcontrib><creatorcontrib>Takino, Rie</creatorcontrib><creatorcontrib>Miyahara, Yuya</creatorcontrib><creatorcontrib>Maruno, Takahiro</creatorcontrib><creatorcontrib>Kobayashi, Yuji</creatorcontrib><creatorcontrib>Ohkubo, Tadayasu</creatorcontrib><creatorcontrib>Fukui, Kiichi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uchiyama, Susumu</au><au>Kawahara, Kazuki</au><au>Hosokawa, Yuki</au><au>Fukakusa, Shunsuke</au><au>Oki, Hiroya</au><au>Nakamura, Shota</au><au>Kojima, Yukiko</au><au>Noda, Masanori</au><au>Takino, Rie</au><au>Miyahara, Yuya</au><au>Maruno, Takahiro</au><au>Kobayashi, Yuji</au><au>Ohkubo, Tadayasu</au><au>Fukui, Kiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2015-12-04</date><risdate>2015</risdate><volume>290</volume><issue>49</issue><spage>29461</spage><epage>29477</epage><pages>29461-29477</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ∼30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26491021</pmid><doi>10.1074/jbc.M115.670794</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2015-12, Vol.290 (49), p.29461-29477
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4705948
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adenosine Triphosphatases - chemistry
Amino Acid Sequence
analytical ultracentrifugation
Animals
Area Under Curve
Bacillus
Binding Sites
Calorimetry
Carrier Proteins - chemistry
Cell Cycle Proteins - chemistry
chromatin structure
Chromosomal Proteins, Non-Histone - chemistry
chromosomes
Cloning, Molecular
Cohesins
crystal structure
Crystallography, X-Ray
DNA - chemistry
DNA and Chromosomes
DNA Mutational Analysis
DNA, Single-Stranded - chemistry
DNA-Binding Proteins - chemistry
Humans
Hydrogen - chemistry
hydrogen exchange mass spectrometry
isothermal titration calorimetry (ITC)
Mass Spectrometry
Mice
Molecular Sequence Data
Multiprotein Complexes - chemistry
Nuclear Proteins - chemistry
Protein Binding
Protein Multimerization
protein-DNA interaction
Pyrococcus
Saccharomyces cerevisiae
title Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Basis%20for%20Dimer%20Formation%20of%20Human%20Condensin%20Structural%20Maintenance%20of%20Chromosome%20Proteins%20and%20Its%20Implications%20for%20Single-stranded%20DNA%20Recognition&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Uchiyama,%20Susumu&rft.date=2015-12-04&rft.volume=290&rft.issue=49&rft.spage=29461&rft.epage=29477&rft.pages=29461-29477&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.670794&rft_dat=%3Cpubmed_cross%3E26491021%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26491021&rft_els_id=S0021925820395600&rfr_iscdi=true