Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition
Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ∼30 residues of coiled coils. The str...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2015-12, Vol.290 (49), p.29461-29477 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29477 |
---|---|
container_issue | 49 |
container_start_page | 29461 |
container_title | The Journal of biological chemistry |
container_volume | 290 |
creator | Uchiyama, Susumu Kawahara, Kazuki Hosokawa, Yuki Fukakusa, Shunsuke Oki, Hiroya Nakamura, Shota Kojima, Yukiko Noda, Masanori Takino, Rie Miyahara, Yuya Maruno, Takahiro Kobayashi, Yuji Ohkubo, Tadayasu Fukui, Kiichi |
description | Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ∼30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition. |
doi_str_mv | 10.1074/jbc.M115.670794 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4705948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820395600</els_id><sourcerecordid>26491021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-ce7dab45b7ee57b5e20471ab26d5333ca5c9324b521e11bdd8c33aa5e2880c703</originalsourceid><addsrcrecordid>eNp1kc1uGyEUhVHVqHaSrrureIFxYBjMzKaS6zSJpfwpP1J2iIFrB2sGLMCR-jJ51uBOY6WL3s1d3O-cC_cg9I2SCSWiOlm3enJFKZ9MBRFN9QmNKalZwTh9-ozGhJS0aEpej9BhjGuSq2roFzQqp7nn4Ri93qew1WkbVId_qmgjXvqAT20PAZ_50KtkvcN-iS-2vXJ47p0BF63DH3RXyroETjkNO3L-HHzvo-8B3wafwLqIlTN4kSJe9JvO6j-mw6Z761YdFDGFjIDBp9czfAfar5zdQcfoYKm6CF__9iP0ePbrYX5RXN6cL-azy0JzzlKhQRjVVrwVAFy0HEpSCaracmo4Y0wrrhtWVi0vKVDaGlNrxpTKXF0TLQg7Qj8G38227cFocPlBndwE26vwW3pl5b8TZ5_lyr_IShDeVHU2OBkMdPAxBljutZTIXVQyRyV3Uckhqqz4_nHlnn_PJgPNAED--IuFIKO2kI9sbACdpPH2v-Zvj8SoEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Uchiyama, Susumu ; Kawahara, Kazuki ; Hosokawa, Yuki ; Fukakusa, Shunsuke ; Oki, Hiroya ; Nakamura, Shota ; Kojima, Yukiko ; Noda, Masanori ; Takino, Rie ; Miyahara, Yuya ; Maruno, Takahiro ; Kobayashi, Yuji ; Ohkubo, Tadayasu ; Fukui, Kiichi</creator><creatorcontrib>Uchiyama, Susumu ; Kawahara, Kazuki ; Hosokawa, Yuki ; Fukakusa, Shunsuke ; Oki, Hiroya ; Nakamura, Shota ; Kojima, Yukiko ; Noda, Masanori ; Takino, Rie ; Miyahara, Yuya ; Maruno, Takahiro ; Kobayashi, Yuji ; Ohkubo, Tadayasu ; Fukui, Kiichi</creatorcontrib><description>Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ∼30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.670794</identifier><identifier>PMID: 26491021</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphatases - chemistry ; Amino Acid Sequence ; analytical ultracentrifugation ; Animals ; Area Under Curve ; Bacillus ; Binding Sites ; Calorimetry ; Carrier Proteins - chemistry ; Cell Cycle Proteins - chemistry ; chromatin structure ; Chromosomal Proteins, Non-Histone - chemistry ; chromosomes ; Cloning, Molecular ; Cohesins ; crystal structure ; Crystallography, X-Ray ; DNA - chemistry ; DNA and Chromosomes ; DNA Mutational Analysis ; DNA, Single-Stranded - chemistry ; DNA-Binding Proteins - chemistry ; Humans ; Hydrogen - chemistry ; hydrogen exchange mass spectrometry ; isothermal titration calorimetry (ITC) ; Mass Spectrometry ; Mice ; Molecular Sequence Data ; Multiprotein Complexes - chemistry ; Nuclear Proteins - chemistry ; Protein Binding ; Protein Multimerization ; protein-DNA interaction ; Pyrococcus ; Saccharomyces cerevisiae</subject><ispartof>The Journal of biological chemistry, 2015-12, Vol.290 (49), p.29461-29477</ispartof><rights>2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-ce7dab45b7ee57b5e20471ab26d5333ca5c9324b521e11bdd8c33aa5e2880c703</citedby><cites>FETCH-LOGICAL-c553t-ce7dab45b7ee57b5e20471ab26d5333ca5c9324b521e11bdd8c33aa5e2880c703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705948/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705948/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26491021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uchiyama, Susumu</creatorcontrib><creatorcontrib>Kawahara, Kazuki</creatorcontrib><creatorcontrib>Hosokawa, Yuki</creatorcontrib><creatorcontrib>Fukakusa, Shunsuke</creatorcontrib><creatorcontrib>Oki, Hiroya</creatorcontrib><creatorcontrib>Nakamura, Shota</creatorcontrib><creatorcontrib>Kojima, Yukiko</creatorcontrib><creatorcontrib>Noda, Masanori</creatorcontrib><creatorcontrib>Takino, Rie</creatorcontrib><creatorcontrib>Miyahara, Yuya</creatorcontrib><creatorcontrib>Maruno, Takahiro</creatorcontrib><creatorcontrib>Kobayashi, Yuji</creatorcontrib><creatorcontrib>Ohkubo, Tadayasu</creatorcontrib><creatorcontrib>Fukui, Kiichi</creatorcontrib><title>Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ∼30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Amino Acid Sequence</subject><subject>analytical ultracentrifugation</subject><subject>Animals</subject><subject>Area Under Curve</subject><subject>Bacillus</subject><subject>Binding Sites</subject><subject>Calorimetry</subject><subject>Carrier Proteins - chemistry</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>chromatin structure</subject><subject>Chromosomal Proteins, Non-Histone - chemistry</subject><subject>chromosomes</subject><subject>Cloning, Molecular</subject><subject>Cohesins</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>DNA - chemistry</subject><subject>DNA and Chromosomes</subject><subject>DNA Mutational Analysis</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>Humans</subject><subject>Hydrogen - chemistry</subject><subject>hydrogen exchange mass spectrometry</subject><subject>isothermal titration calorimetry (ITC)</subject><subject>Mass Spectrometry</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Nuclear Proteins - chemistry</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>protein-DNA interaction</subject><subject>Pyrococcus</subject><subject>Saccharomyces cerevisiae</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uGyEUhVHVqHaSrrureIFxYBjMzKaS6zSJpfwpP1J2iIFrB2sGLMCR-jJ51uBOY6WL3s1d3O-cC_cg9I2SCSWiOlm3enJFKZ9MBRFN9QmNKalZwTh9-ozGhJS0aEpej9BhjGuSq2roFzQqp7nn4Ri93qew1WkbVId_qmgjXvqAT20PAZ_50KtkvcN-iS-2vXJ47p0BF63DH3RXyroETjkNO3L-HHzvo-8B3wafwLqIlTN4kSJe9JvO6j-mw6Z761YdFDGFjIDBp9czfAfar5zdQcfoYKm6CF__9iP0ePbrYX5RXN6cL-azy0JzzlKhQRjVVrwVAFy0HEpSCaracmo4Y0wrrhtWVi0vKVDaGlNrxpTKXF0TLQg7Qj8G38227cFocPlBndwE26vwW3pl5b8TZ5_lyr_IShDeVHU2OBkMdPAxBljutZTIXVQyRyV3Uckhqqz4_nHlnn_PJgPNAED--IuFIKO2kI9sbACdpPH2v-Zvj8SoEQ</recordid><startdate>20151204</startdate><enddate>20151204</enddate><creator>Uchiyama, Susumu</creator><creator>Kawahara, Kazuki</creator><creator>Hosokawa, Yuki</creator><creator>Fukakusa, Shunsuke</creator><creator>Oki, Hiroya</creator><creator>Nakamura, Shota</creator><creator>Kojima, Yukiko</creator><creator>Noda, Masanori</creator><creator>Takino, Rie</creator><creator>Miyahara, Yuya</creator><creator>Maruno, Takahiro</creator><creator>Kobayashi, Yuji</creator><creator>Ohkubo, Tadayasu</creator><creator>Fukui, Kiichi</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20151204</creationdate><title>Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition</title><author>Uchiyama, Susumu ; Kawahara, Kazuki ; Hosokawa, Yuki ; Fukakusa, Shunsuke ; Oki, Hiroya ; Nakamura, Shota ; Kojima, Yukiko ; Noda, Masanori ; Takino, Rie ; Miyahara, Yuya ; Maruno, Takahiro ; Kobayashi, Yuji ; Ohkubo, Tadayasu ; Fukui, Kiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-ce7dab45b7ee57b5e20471ab26d5333ca5c9324b521e11bdd8c33aa5e2880c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Amino Acid Sequence</topic><topic>analytical ultracentrifugation</topic><topic>Animals</topic><topic>Area Under Curve</topic><topic>Bacillus</topic><topic>Binding Sites</topic><topic>Calorimetry</topic><topic>Carrier Proteins - chemistry</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>chromatin structure</topic><topic>Chromosomal Proteins, Non-Histone - chemistry</topic><topic>chromosomes</topic><topic>Cloning, Molecular</topic><topic>Cohesins</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>DNA - chemistry</topic><topic>DNA and Chromosomes</topic><topic>DNA Mutational Analysis</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>Humans</topic><topic>Hydrogen - chemistry</topic><topic>hydrogen exchange mass spectrometry</topic><topic>isothermal titration calorimetry (ITC)</topic><topic>Mass Spectrometry</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Nuclear Proteins - chemistry</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>protein-DNA interaction</topic><topic>Pyrococcus</topic><topic>Saccharomyces cerevisiae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uchiyama, Susumu</creatorcontrib><creatorcontrib>Kawahara, Kazuki</creatorcontrib><creatorcontrib>Hosokawa, Yuki</creatorcontrib><creatorcontrib>Fukakusa, Shunsuke</creatorcontrib><creatorcontrib>Oki, Hiroya</creatorcontrib><creatorcontrib>Nakamura, Shota</creatorcontrib><creatorcontrib>Kojima, Yukiko</creatorcontrib><creatorcontrib>Noda, Masanori</creatorcontrib><creatorcontrib>Takino, Rie</creatorcontrib><creatorcontrib>Miyahara, Yuya</creatorcontrib><creatorcontrib>Maruno, Takahiro</creatorcontrib><creatorcontrib>Kobayashi, Yuji</creatorcontrib><creatorcontrib>Ohkubo, Tadayasu</creatorcontrib><creatorcontrib>Fukui, Kiichi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uchiyama, Susumu</au><au>Kawahara, Kazuki</au><au>Hosokawa, Yuki</au><au>Fukakusa, Shunsuke</au><au>Oki, Hiroya</au><au>Nakamura, Shota</au><au>Kojima, Yukiko</au><au>Noda, Masanori</au><au>Takino, Rie</au><au>Miyahara, Yuya</au><au>Maruno, Takahiro</au><au>Kobayashi, Yuji</au><au>Ohkubo, Tadayasu</au><au>Fukui, Kiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2015-12-04</date><risdate>2015</risdate><volume>290</volume><issue>49</issue><spage>29461</spage><epage>29477</epage><pages>29461-29477</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ∼30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26491021</pmid><doi>10.1074/jbc.M115.670794</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2015-12, Vol.290 (49), p.29461-29477 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4705948 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adenosine Triphosphatases - chemistry Amino Acid Sequence analytical ultracentrifugation Animals Area Under Curve Bacillus Binding Sites Calorimetry Carrier Proteins - chemistry Cell Cycle Proteins - chemistry chromatin structure Chromosomal Proteins, Non-Histone - chemistry chromosomes Cloning, Molecular Cohesins crystal structure Crystallography, X-Ray DNA - chemistry DNA and Chromosomes DNA Mutational Analysis DNA, Single-Stranded - chemistry DNA-Binding Proteins - chemistry Humans Hydrogen - chemistry hydrogen exchange mass spectrometry isothermal titration calorimetry (ITC) Mass Spectrometry Mice Molecular Sequence Data Multiprotein Complexes - chemistry Nuclear Proteins - chemistry Protein Binding Protein Multimerization protein-DNA interaction Pyrococcus Saccharomyces cerevisiae |
title | Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Basis%20for%20Dimer%20Formation%20of%20Human%20Condensin%20Structural%20Maintenance%20of%20Chromosome%20Proteins%20and%20Its%20Implications%20for%20Single-stranded%20DNA%20Recognition&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Uchiyama,%20Susumu&rft.date=2015-12-04&rft.volume=290&rft.issue=49&rft.spage=29461&rft.epage=29477&rft.pages=29461-29477&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.670794&rft_dat=%3Cpubmed_cross%3E26491021%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26491021&rft_els_id=S0021925820395600&rfr_iscdi=true |