A human transcription factor in search mode
Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structu...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2016-01, Vol.44 (1), p.63-74 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 63 |
container_title | Nucleic acids research |
container_volume | 44 |
creator | Hauser, Kevin Essuman, Bernard He, Yiqing Coutsias, Evangelos Garcia-Diaz, Miguel Simmerling, Carlos |
description | Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology. |
doi_str_mv | 10.1093/nar/gkv1091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4705650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760900158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-6df7156627f9ba036f712b29dfbb14ce44681ea42608238fc4a67678ab1dbdfd3</originalsourceid><addsrcrecordid>eNqNkc1LAzEQxYMotlZP3mWPQlmb7-xehFL8goIXPYdsNmlXd5Oa7Bb87420Fr15mhnmx2PmPQAuEbxBsCQzp8Js9b5NPToCY0Q4zmnJ8TEYQwJZjiAtRuAsxjcIEUWMnoIR5lwQgekYTOfZeuiUy_qgXNSh2fSNd5lVuvcha1wWjQp6nXW-NufgxKo2mot9nYDX-7uXxWO-fH54WsyXuaaI9jmvrUCMcyxsWSlIeBpxhcvaVhWi2lDKC2QUxRwWmBRWU8UFF4WqUF3VtiYTcLvT3QxVZ2ptXDqulZvQdCp8Sq8a-XfjmrVc-a2kAjLOYBK43gsE_zGY2Muuidq0rXLGD1EiUcKSElbQf6Aclsk4ViR0ukN18DEGYw8XISi_k5ApCblPItFXv584sD_Wky_rsITX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760900158</pqid></control><display><type>article</type><title>A human transcription factor in search mode</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hauser, Kevin ; Essuman, Bernard ; He, Yiqing ; Coutsias, Evangelos ; Garcia-Diaz, Miguel ; Simmerling, Carlos</creator><creatorcontrib>Hauser, Kevin ; Essuman, Bernard ; He, Yiqing ; Coutsias, Evangelos ; Garcia-Diaz, Miguel ; Simmerling, Carlos</creatorcontrib><description>Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkv1091</identifier><identifier>PMID: 26673724</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Basic-Leucine Zipper Transcription Factors - chemistry ; Basic-Leucine Zipper Transcription Factors - metabolism ; Computational Biology ; DNA - chemistry ; DNA - metabolism ; DNA, B-Form ; Humans ; Mitochondrial Proteins - chemistry ; Mitochondrial Proteins - metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; Transcription Factors - chemistry ; Transcription Factors - metabolism</subject><ispartof>Nucleic acids research, 2016-01, Vol.44 (1), p.63-74</ispartof><rights>The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-6df7156627f9ba036f712b29dfbb14ce44681ea42608238fc4a67678ab1dbdfd3</citedby><cites>FETCH-LOGICAL-c414t-6df7156627f9ba036f712b29dfbb14ce44681ea42608238fc4a67678ab1dbdfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705650/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705650/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26673724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hauser, Kevin</creatorcontrib><creatorcontrib>Essuman, Bernard</creatorcontrib><creatorcontrib>He, Yiqing</creatorcontrib><creatorcontrib>Coutsias, Evangelos</creatorcontrib><creatorcontrib>Garcia-Diaz, Miguel</creatorcontrib><creatorcontrib>Simmerling, Carlos</creatorcontrib><title>A human transcription factor in search mode</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology.</description><subject>Basic-Leucine Zipper Transcription Factors - chemistry</subject><subject>Basic-Leucine Zipper Transcription Factors - metabolism</subject><subject>Computational Biology</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA, B-Form</subject><subject>Humans</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1LAzEQxYMotlZP3mWPQlmb7-xehFL8goIXPYdsNmlXd5Oa7Bb87420Fr15mhnmx2PmPQAuEbxBsCQzp8Js9b5NPToCY0Q4zmnJ8TEYQwJZjiAtRuAsxjcIEUWMnoIR5lwQgekYTOfZeuiUy_qgXNSh2fSNd5lVuvcha1wWjQp6nXW-NufgxKo2mot9nYDX-7uXxWO-fH54WsyXuaaI9jmvrUCMcyxsWSlIeBpxhcvaVhWi2lDKC2QUxRwWmBRWU8UFF4WqUF3VtiYTcLvT3QxVZ2ptXDqulZvQdCp8Sq8a-XfjmrVc-a2kAjLOYBK43gsE_zGY2Muuidq0rXLGD1EiUcKSElbQf6Aclsk4ViR0ukN18DEGYw8XISi_k5ApCblPItFXv584sD_Wky_rsITX</recordid><startdate>20160108</startdate><enddate>20160108</enddate><creator>Hauser, Kevin</creator><creator>Essuman, Bernard</creator><creator>He, Yiqing</creator><creator>Coutsias, Evangelos</creator><creator>Garcia-Diaz, Miguel</creator><creator>Simmerling, Carlos</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20160108</creationdate><title>A human transcription factor in search mode</title><author>Hauser, Kevin ; Essuman, Bernard ; He, Yiqing ; Coutsias, Evangelos ; Garcia-Diaz, Miguel ; Simmerling, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-6df7156627f9ba036f712b29dfbb14ce44681ea42608238fc4a67678ab1dbdfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Basic-Leucine Zipper Transcription Factors - chemistry</topic><topic>Basic-Leucine Zipper Transcription Factors - metabolism</topic><topic>Computational Biology</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA, B-Form</topic><topic>Humans</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hauser, Kevin</creatorcontrib><creatorcontrib>Essuman, Bernard</creatorcontrib><creatorcontrib>He, Yiqing</creatorcontrib><creatorcontrib>Coutsias, Evangelos</creatorcontrib><creatorcontrib>Garcia-Diaz, Miguel</creatorcontrib><creatorcontrib>Simmerling, Carlos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hauser, Kevin</au><au>Essuman, Bernard</au><au>He, Yiqing</au><au>Coutsias, Evangelos</au><au>Garcia-Diaz, Miguel</au><au>Simmerling, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A human transcription factor in search mode</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2016-01-08</date><risdate>2016</risdate><volume>44</volume><issue>1</issue><spage>63</spage><epage>74</epage><pages>63-74</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>26673724</pmid><doi>10.1093/nar/gkv1091</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2016-01, Vol.44 (1), p.63-74 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4705650 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Basic-Leucine Zipper Transcription Factors - chemistry Basic-Leucine Zipper Transcription Factors - metabolism Computational Biology DNA - chemistry DNA - metabolism DNA, B-Form Humans Mitochondrial Proteins - chemistry Mitochondrial Proteins - metabolism Models, Molecular Protein Binding Protein Conformation Transcription Factors - chemistry Transcription Factors - metabolism |
title | A human transcription factor in search mode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20human%20transcription%20factor%20in%20search%20mode&rft.jtitle=Nucleic%20acids%20research&rft.au=Hauser,%20Kevin&rft.date=2016-01-08&rft.volume=44&rft.issue=1&rft.spage=63&rft.epage=74&rft.pages=63-74&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkv1091&rft_dat=%3Cproquest_pubme%3E1760900158%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760900158&rft_id=info:pmid/26673724&rfr_iscdi=true |