Evolutionary and functional perspectives on signaling from neuronal surface to nucleus

Reliance on Ca2+ signaling has been well-preserved through the course of evolution. While the complexity of Ca2+ signaling pathways has increased, activation of transcription factors including CREB by Ca2+/CaM-dependent kinases (CaMKs) has remained critical for long-term plasticity. In C. elegans, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2015-04, Vol.460 (1), p.88-99
Hauptverfasser: Cohen, Samuel M., Li, Boxing, Tsien, Richard W., Ma, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 1
container_start_page 88
container_title Biochemical and biophysical research communications
container_volume 460
creator Cohen, Samuel M.
Li, Boxing
Tsien, Richard W.
Ma, Huan
description Reliance on Ca2+ signaling has been well-preserved through the course of evolution. While the complexity of Ca2+ signaling pathways has increased, activation of transcription factors including CREB by Ca2+/CaM-dependent kinases (CaMKs) has remained critical for long-term plasticity. In C. elegans, the CaMK family is made up of only three members, and CREB phosphorylation is mediated by CMK-1, the homologue of CaMKI. CMK-1 nuclear translocation directly regulates adaptation of thermotaxis behavior in response to changes in the environment. In mammals, the CaMK family has been expanded from three to ten members, enabling specialization of individual elements of a signal transduction pathway and increased reliance on the CaMKII subfamily. This increased complexity enables private line communication between Ca2+ sources at the cell surface and specific cellular targets. Using both new and previously published data, we review the mechanism of a γCaMKII-CaM nuclear translocation. This intricate pathway depends on a specific role for multiple Ca2+/CaM-dependent kinases and phosphatases: α/βCaMKII phosphorylates γCaMKII to trap CaM; CaN dephosphorylates γCaMKII to dispatch it to the nucleus; and PP2A induces CaM release from γCaMKII so that CaMKK and CaMKIV can trigger CREB phosphorylation. Thus, while certain basic elements have been conserved from C. elegans, evolutionary modifications offer opportunities for targeted communication, regulation of key nodes and checkpoints, and greater specificity and flexibility in signaling.
doi_str_mv 10.1016/j.bbrc.2015.02.146
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4701207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X15003939</els_id><sourcerecordid>1697748219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-955cd7331449c1b5c93963a832c56c9e8e91b0fcdf993b4acaa7fc3b64c983643</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7rj6BzxIgxcv3VY--iMggizrKix4UfEW0tXVsxl6kjHpHvDfm97ZXfSip1Cpp97krZexlxwqDrx5u6v6PmIlgNcViIqr5hHbcNBQCg7qMdsAQFMKzX-csWcp7QB4ZvRTdiZqrbtWthv2_fIYpmV2wdv4q7B-KMbF4209FQeK6UC5OlIqgi-S2-Zr57fFGMO-8LTEWy4tcbRIxRwKv-BES3rOnox2SvTi7jxn3z5efr34VF5_ufp88eG6xLoTc6nrGodWSq6URt7XqKVupO2kwLpBTR1p3sOIw6i17JVFa9sRZd8o1J1slDxn70-6h6Xf04Dk52gnc4hun_2YYJ35u-PdjdmGo1EtcAFtFnh9EghpdiahmwlvMHifbRshVCMAdKbe3D0Tw8-F0mz2LiFNk_UUlmR4J2rFO87h_2ij21Z1gq-q4oRiDClFGh_-zcGsCZudWRM2a8IGhMnp5aFXfzp-GLmPNAPvTgDlvR8dxdUVeaTBxdXUENy_9H8DM5S5BA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697748219</pqid></control><display><type>article</type><title>Evolutionary and functional perspectives on signaling from neuronal surface to nucleus</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Cohen, Samuel M. ; Li, Boxing ; Tsien, Richard W. ; Ma, Huan</creator><creatorcontrib>Cohen, Samuel M. ; Li, Boxing ; Tsien, Richard W. ; Ma, Huan</creatorcontrib><description>Reliance on Ca2+ signaling has been well-preserved through the course of evolution. While the complexity of Ca2+ signaling pathways has increased, activation of transcription factors including CREB by Ca2+/CaM-dependent kinases (CaMKs) has remained critical for long-term plasticity. In C. elegans, the CaMK family is made up of only three members, and CREB phosphorylation is mediated by CMK-1, the homologue of CaMKI. CMK-1 nuclear translocation directly regulates adaptation of thermotaxis behavior in response to changes in the environment. In mammals, the CaMK family has been expanded from three to ten members, enabling specialization of individual elements of a signal transduction pathway and increased reliance on the CaMKII subfamily. This increased complexity enables private line communication between Ca2+ sources at the cell surface and specific cellular targets. Using both new and previously published data, we review the mechanism of a γCaMKII-CaM nuclear translocation. This intricate pathway depends on a specific role for multiple Ca2+/CaM-dependent kinases and phosphatases: α/βCaMKII phosphorylates γCaMKII to trap CaM; CaN dephosphorylates γCaMKII to dispatch it to the nucleus; and PP2A induces CaM release from γCaMKII so that CaMKK and CaMKIV can trigger CREB phosphorylation. Thus, while certain basic elements have been conserved from C. elegans, evolutionary modifications offer opportunities for targeted communication, regulation of key nodes and checkpoints, and greater specificity and flexibility in signaling.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2015.02.146</identifier><identifier>PMID: 25998737</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; Active Transport, Cell Nucleus - genetics ; Animals ; CALCIUM ; Calcium - metabolism ; CALCIUM IONS ; Calcium Signaling - genetics ; calcium-calmodulin-dependent protein kinase ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics ; CALMODULIN ; Calmodulin - genetics ; CaM kinase ; Cell Membrane - genetics ; Cell Nucleus - genetics ; EVOLUTION ; Evolution, Molecular ; FLEXIBILITY ; Humans ; MAMMALS ; Models, Genetic ; MODIFICATIONS ; neurons ; Neurons - physiology ; PHOSPHATASES ; PHOSPHORYLATION ; PHOSPHOTRANSFERASES ; PLASTICITY ; REVIEWS ; signal transduction ; Signaling to the nucleus ; SIGNALS ; SPECIFICITY ; SURFACES ; TRANSCRIPTION FACTORS ; transcriptional activation</subject><ispartof>Biochemical and biophysical research communications, 2015-04, Vol.460 (1), p.88-99</ispartof><rights>2015</rights><rights>Copyright © 2015. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-955cd7331449c1b5c93963a832c56c9e8e91b0fcdf993b4acaa7fc3b64c983643</citedby><cites>FETCH-LOGICAL-c582t-955cd7331449c1b5c93963a832c56c9e8e91b0fcdf993b4acaa7fc3b64c983643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006291X15003939$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25998737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22462009$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Samuel M.</creatorcontrib><creatorcontrib>Li, Boxing</creatorcontrib><creatorcontrib>Tsien, Richard W.</creatorcontrib><creatorcontrib>Ma, Huan</creatorcontrib><title>Evolutionary and functional perspectives on signaling from neuronal surface to nucleus</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Reliance on Ca2+ signaling has been well-preserved through the course of evolution. While the complexity of Ca2+ signaling pathways has increased, activation of transcription factors including CREB by Ca2+/CaM-dependent kinases (CaMKs) has remained critical for long-term plasticity. In C. elegans, the CaMK family is made up of only three members, and CREB phosphorylation is mediated by CMK-1, the homologue of CaMKI. CMK-1 nuclear translocation directly regulates adaptation of thermotaxis behavior in response to changes in the environment. In mammals, the CaMK family has been expanded from three to ten members, enabling specialization of individual elements of a signal transduction pathway and increased reliance on the CaMKII subfamily. This increased complexity enables private line communication between Ca2+ sources at the cell surface and specific cellular targets. Using both new and previously published data, we review the mechanism of a γCaMKII-CaM nuclear translocation. This intricate pathway depends on a specific role for multiple Ca2+/CaM-dependent kinases and phosphatases: α/βCaMKII phosphorylates γCaMKII to trap CaM; CaN dephosphorylates γCaMKII to dispatch it to the nucleus; and PP2A induces CaM release from γCaMKII so that CaMKK and CaMKIV can trigger CREB phosphorylation. Thus, while certain basic elements have been conserved from C. elegans, evolutionary modifications offer opportunities for targeted communication, regulation of key nodes and checkpoints, and greater specificity and flexibility in signaling.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Active Transport, Cell Nucleus - genetics</subject><subject>Animals</subject><subject>CALCIUM</subject><subject>Calcium - metabolism</subject><subject>CALCIUM IONS</subject><subject>Calcium Signaling - genetics</subject><subject>calcium-calmodulin-dependent protein kinase</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics</subject><subject>CALMODULIN</subject><subject>Calmodulin - genetics</subject><subject>CaM kinase</subject><subject>Cell Membrane - genetics</subject><subject>Cell Nucleus - genetics</subject><subject>EVOLUTION</subject><subject>Evolution, Molecular</subject><subject>FLEXIBILITY</subject><subject>Humans</subject><subject>MAMMALS</subject><subject>Models, Genetic</subject><subject>MODIFICATIONS</subject><subject>neurons</subject><subject>Neurons - physiology</subject><subject>PHOSPHATASES</subject><subject>PHOSPHORYLATION</subject><subject>PHOSPHOTRANSFERASES</subject><subject>PLASTICITY</subject><subject>REVIEWS</subject><subject>signal transduction</subject><subject>Signaling to the nucleus</subject><subject>SIGNALS</subject><subject>SPECIFICITY</subject><subject>SURFACES</subject><subject>TRANSCRIPTION FACTORS</subject><subject>transcriptional activation</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhoMo7rj6BzxIgxcv3VY--iMggizrKix4UfEW0tXVsxl6kjHpHvDfm97ZXfSip1Cpp97krZexlxwqDrx5u6v6PmIlgNcViIqr5hHbcNBQCg7qMdsAQFMKzX-csWcp7QB4ZvRTdiZqrbtWthv2_fIYpmV2wdv4q7B-KMbF4209FQeK6UC5OlIqgi-S2-Zr57fFGMO-8LTEWy4tcbRIxRwKv-BES3rOnox2SvTi7jxn3z5efr34VF5_ufp88eG6xLoTc6nrGodWSq6URt7XqKVupO2kwLpBTR1p3sOIw6i17JVFa9sRZd8o1J1slDxn70-6h6Xf04Dk52gnc4hun_2YYJ35u-PdjdmGo1EtcAFtFnh9EghpdiahmwlvMHifbRshVCMAdKbe3D0Tw8-F0mz2LiFNk_UUlmR4J2rFO87h_2ij21Z1gq-q4oRiDClFGh_-zcGsCZudWRM2a8IGhMnp5aFXfzp-GLmPNAPvTgDlvR8dxdUVeaTBxdXUENy_9H8DM5S5BA</recordid><startdate>20150424</startdate><enddate>20150424</enddate><creator>Cohen, Samuel M.</creator><creator>Li, Boxing</creator><creator>Tsien, Richard W.</creator><creator>Ma, Huan</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20150424</creationdate><title>Evolutionary and functional perspectives on signaling from neuronal surface to nucleus</title><author>Cohen, Samuel M. ; Li, Boxing ; Tsien, Richard W. ; Ma, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-955cd7331449c1b5c93963a832c56c9e8e91b0fcdf993b4acaa7fc3b64c983643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Active Transport, Cell Nucleus - genetics</topic><topic>Animals</topic><topic>CALCIUM</topic><topic>Calcium - metabolism</topic><topic>CALCIUM IONS</topic><topic>Calcium Signaling - genetics</topic><topic>calcium-calmodulin-dependent protein kinase</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics</topic><topic>CALMODULIN</topic><topic>Calmodulin - genetics</topic><topic>CaM kinase</topic><topic>Cell Membrane - genetics</topic><topic>Cell Nucleus - genetics</topic><topic>EVOLUTION</topic><topic>Evolution, Molecular</topic><topic>FLEXIBILITY</topic><topic>Humans</topic><topic>MAMMALS</topic><topic>Models, Genetic</topic><topic>MODIFICATIONS</topic><topic>neurons</topic><topic>Neurons - physiology</topic><topic>PHOSPHATASES</topic><topic>PHOSPHORYLATION</topic><topic>PHOSPHOTRANSFERASES</topic><topic>PLASTICITY</topic><topic>REVIEWS</topic><topic>signal transduction</topic><topic>Signaling to the nucleus</topic><topic>SIGNALS</topic><topic>SPECIFICITY</topic><topic>SURFACES</topic><topic>TRANSCRIPTION FACTORS</topic><topic>transcriptional activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Samuel M.</creatorcontrib><creatorcontrib>Li, Boxing</creatorcontrib><creatorcontrib>Tsien, Richard W.</creatorcontrib><creatorcontrib>Ma, Huan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Samuel M.</au><au>Li, Boxing</au><au>Tsien, Richard W.</au><au>Ma, Huan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary and functional perspectives on signaling from neuronal surface to nucleus</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2015-04-24</date><risdate>2015</risdate><volume>460</volume><issue>1</issue><spage>88</spage><epage>99</epage><pages>88-99</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Reliance on Ca2+ signaling has been well-preserved through the course of evolution. While the complexity of Ca2+ signaling pathways has increased, activation of transcription factors including CREB by Ca2+/CaM-dependent kinases (CaMKs) has remained critical for long-term plasticity. In C. elegans, the CaMK family is made up of only three members, and CREB phosphorylation is mediated by CMK-1, the homologue of CaMKI. CMK-1 nuclear translocation directly regulates adaptation of thermotaxis behavior in response to changes in the environment. In mammals, the CaMK family has been expanded from three to ten members, enabling specialization of individual elements of a signal transduction pathway and increased reliance on the CaMKII subfamily. This increased complexity enables private line communication between Ca2+ sources at the cell surface and specific cellular targets. Using both new and previously published data, we review the mechanism of a γCaMKII-CaM nuclear translocation. This intricate pathway depends on a specific role for multiple Ca2+/CaM-dependent kinases and phosphatases: α/βCaMKII phosphorylates γCaMKII to trap CaM; CaN dephosphorylates γCaMKII to dispatch it to the nucleus; and PP2A induces CaM release from γCaMKII so that CaMKK and CaMKIV can trigger CREB phosphorylation. Thus, while certain basic elements have been conserved from C. elegans, evolutionary modifications offer opportunities for targeted communication, regulation of key nodes and checkpoints, and greater specificity and flexibility in signaling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25998737</pmid><doi>10.1016/j.bbrc.2015.02.146</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2015-04, Vol.460 (1), p.88-99
issn 0006-291X
1090-2104
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4701207
source MEDLINE; Elsevier ScienceDirect Journals
subjects 60 APPLIED LIFE SCIENCES
Active Transport, Cell Nucleus - genetics
Animals
CALCIUM
Calcium - metabolism
CALCIUM IONS
Calcium Signaling - genetics
calcium-calmodulin-dependent protein kinase
Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics
CALMODULIN
Calmodulin - genetics
CaM kinase
Cell Membrane - genetics
Cell Nucleus - genetics
EVOLUTION
Evolution, Molecular
FLEXIBILITY
Humans
MAMMALS
Models, Genetic
MODIFICATIONS
neurons
Neurons - physiology
PHOSPHATASES
PHOSPHORYLATION
PHOSPHOTRANSFERASES
PLASTICITY
REVIEWS
signal transduction
Signaling to the nucleus
SIGNALS
SPECIFICITY
SURFACES
TRANSCRIPTION FACTORS
transcriptional activation
title Evolutionary and functional perspectives on signaling from neuronal surface to nucleus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20and%20functional%20perspectives%20on%20signaling%20from%20neuronal%20surface%20to%20nucleus&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Cohen,%20Samuel%20M.&rft.date=2015-04-24&rft.volume=460&rft.issue=1&rft.spage=88&rft.epage=99&rft.pages=88-99&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2015.02.146&rft_dat=%3Cproquest_pubme%3E1697748219%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1697748219&rft_id=info:pmid/25998737&rft_els_id=S0006291X15003939&rfr_iscdi=true