Evolutionary Divergence of Aggregatibacter actinomycetemcomitans
Gram-negative facultative Aggregatibacter actinomycetemcomitans is an oral pathogen associated with periodontitis. The genetic heterogeneity among A. actinomycetemcomitans strains has been long recognized. This study provides a comprehensive genomic analysis of A. actinomycetemcomitans and the close...
Gespeichert in:
Veröffentlicht in: | Journal of dental research 2016-01, Vol.95 (1), p.94-101 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101 |
---|---|
container_issue | 1 |
container_start_page | 94 |
container_title | Journal of dental research |
container_volume | 95 |
creator | Kittichotirat, W. Bumgarner, R.E. Chen, C. |
description | Gram-negative facultative Aggregatibacter actinomycetemcomitans is an oral pathogen associated with periodontitis. The genetic heterogeneity among A. actinomycetemcomitans strains has been long recognized. This study provides a comprehensive genomic analysis of A. actinomycetemcomitans and the closely related nonpathogenic Aggregatibacter aphrophilus. Whole genome sequencing by Illumina MiSeq platform was performed for 31 A. actinomycetemcomitans and 2 A. aphrophilus strains. Sequence similarity analysis shows a total of 3,220 unique genes across the 2 species, where 1,550 are core genes present in all genomes and 1,670 are variable genes (accessory genes) missing in at least 1 genome. Phylogenetic analysis based on 397 concatenated core genes distinguished A. aphrophilus and A. actinomycetemcomitans. The latter was in turn divided into 5 clades: clade b (serotype b), clade c (serotype c), clade e/f (serotypes e and f), clade a/d (serotypes a and d), and clade e′ (serotype e strains). Accessory genes accounted for 14.1% to 23.2% of the A. actinomycetemcomitans genomes, with a majority belonging to the category of poorly characterized by Cluster of Orthologous Groups classification. These accessory genes were often organized into genomic islands (n = 387) with base composition biases, suggesting their acquisitions via horizontal gene transfer. There was a greater degree of similarity in gene content and genomic islands among strains within clades than between clades. Strains of clade e′ isolated from human were found to be missing the genomic island that carries genes encoding cytolethal distending toxins. Taken together, the results suggest a pattern of sequential divergence, starting from the separation of A. aphrophilus and A. actinomycetemcomitans through gain and loss of genes and ending with the divergence of the latter species into distinct clades and serotypes. With differing constellations of genes, the A. actinomycetemcomitans clades may have evolved distinct adaptation strategies to the human oral cavity. |
doi_str_mv | 10.1177/0022034515608163 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4700661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0022034515608163</sage_id><sourcerecordid>1751991520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-31e7dec482797ea96c3f2fdf957c0df8329c8c2b77ae3f36aea1db5102d9b0e3</originalsourceid><addsrcrecordid>eNqNkUtP3DAUha2qVRmm3bOqRuqmm8D1O95UIAoUCakb9pbj3KRGSUztZCT-fT0aSikSUjf24nz33Mch5IjCMaVanwAwBlxIKhXUVPE3ZEWlEBVIQ9-S1U6udvoBOcz5DoAaVvP35IApwUAbuSKnF9s4LHOIk0sPm29hi6nHyeMmdpuzvk_Yuzk0zs-YNuUNUxwfPM44-jiG2U35A3nXuSHjx8d_TW4vL27Pv1c3P66uz89uKi-MnCtOUbfoRc200eiM8rxjXdsZqT20Xc2Z8bVnjdYOeceVQ0fbRlJgrWkA-Zp83dveL82IrcdpTm6w9ymMZXAbXbD_KlP4afu4tUIDKEWLwZdHgxR_LZhnO4bscRjchHHJlmrFuDLC_A8qqTFUltOvyecX6F1c0lQOYRkvjcEIEIWCPeVTzDlh9zQ3BbsL0r4MspR8er7vU8Gf5ApQ7YHsevzb9VXD3y7Npic</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300609404</pqid></control><display><type>article</type><title>Evolutionary Divergence of Aggregatibacter actinomycetemcomitans</title><source>MEDLINE</source><source>SAGE Complete</source><source>Alma/SFX Local Collection</source><creator>Kittichotirat, W. ; Bumgarner, R.E. ; Chen, C.</creator><creatorcontrib>Kittichotirat, W. ; Bumgarner, R.E. ; Chen, C.</creatorcontrib><description>Gram-negative facultative Aggregatibacter actinomycetemcomitans is an oral pathogen associated with periodontitis. The genetic heterogeneity among A. actinomycetemcomitans strains has been long recognized. This study provides a comprehensive genomic analysis of A. actinomycetemcomitans and the closely related nonpathogenic Aggregatibacter aphrophilus. Whole genome sequencing by Illumina MiSeq platform was performed for 31 A. actinomycetemcomitans and 2 A. aphrophilus strains. Sequence similarity analysis shows a total of 3,220 unique genes across the 2 species, where 1,550 are core genes present in all genomes and 1,670 are variable genes (accessory genes) missing in at least 1 genome. Phylogenetic analysis based on 397 concatenated core genes distinguished A. aphrophilus and A. actinomycetemcomitans. The latter was in turn divided into 5 clades: clade b (serotype b), clade c (serotype c), clade e/f (serotypes e and f), clade a/d (serotypes a and d), and clade e′ (serotype e strains). Accessory genes accounted for 14.1% to 23.2% of the A. actinomycetemcomitans genomes, with a majority belonging to the category of poorly characterized by Cluster of Orthologous Groups classification. These accessory genes were often organized into genomic islands (n = 387) with base composition biases, suggesting their acquisitions via horizontal gene transfer. There was a greater degree of similarity in gene content and genomic islands among strains within clades than between clades. Strains of clade e′ isolated from human were found to be missing the genomic island that carries genes encoding cytolethal distending toxins. Taken together, the results suggest a pattern of sequential divergence, starting from the separation of A. aphrophilus and A. actinomycetemcomitans through gain and loss of genes and ending with the divergence of the latter species into distinct clades and serotypes. With differing constellations of genes, the A. actinomycetemcomitans clades may have evolved distinct adaptation strategies to the human oral cavity.</description><identifier>ISSN: 0022-0345</identifier><identifier>EISSN: 1544-0591</identifier><identifier>DOI: 10.1177/0022034515608163</identifier><identifier>PMID: 26420795</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Aggregatibacter actinomycetemcomitans ; Aggregatibacter actinomycetemcomitans - genetics ; Aggregatibacter aphrophilus - genetics ; Annotations ; Bacterial Toxins - genetics ; Base composition ; Base Composition - genetics ; Dentistry ; Divergence ; DNA, Bacterial - genetics ; DNA, Concatenated - genetics ; Evolution, Molecular ; Gene transfer ; Gene Transfer, Horizontal - genetics ; Genes ; Genes, Bacterial - genetics ; Genetic Heterogeneity ; Genetic Speciation ; Genetic Variation - genetics ; Genome, Bacterial - genetics ; Genomes ; Genomic analysis ; Genomic islands ; Genomic Islands - genetics ; Genomics ; Gum disease ; Humans ; Mouth - microbiology ; Oral cavity ; Pathogenesis ; Periodontitis ; Phylogenetics ; Phylogeny ; Protein Subunits - genetics ; Research Reports ; Sequence Analysis, DNA ; Serogroup ; Serotypes ; Studies</subject><ispartof>Journal of dental research, 2016-01, Vol.95 (1), p.94-101</ispartof><rights>International & American Associations for Dental Research 2015</rights><rights>International & American Associations for Dental Research 2015.</rights><rights>International & American Associations for Dental Research 2015 2015 International & American Associations for Dental Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-31e7dec482797ea96c3f2fdf957c0df8329c8c2b77ae3f36aea1db5102d9b0e3</citedby><cites>FETCH-LOGICAL-c495t-31e7dec482797ea96c3f2fdf957c0df8329c8c2b77ae3f36aea1db5102d9b0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0022034515608163$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0022034515608163$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,776,780,881,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26420795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kittichotirat, W.</creatorcontrib><creatorcontrib>Bumgarner, R.E.</creatorcontrib><creatorcontrib>Chen, C.</creatorcontrib><title>Evolutionary Divergence of Aggregatibacter actinomycetemcomitans</title><title>Journal of dental research</title><addtitle>J Dent Res</addtitle><description>Gram-negative facultative Aggregatibacter actinomycetemcomitans is an oral pathogen associated with periodontitis. The genetic heterogeneity among A. actinomycetemcomitans strains has been long recognized. This study provides a comprehensive genomic analysis of A. actinomycetemcomitans and the closely related nonpathogenic Aggregatibacter aphrophilus. Whole genome sequencing by Illumina MiSeq platform was performed for 31 A. actinomycetemcomitans and 2 A. aphrophilus strains. Sequence similarity analysis shows a total of 3,220 unique genes across the 2 species, where 1,550 are core genes present in all genomes and 1,670 are variable genes (accessory genes) missing in at least 1 genome. Phylogenetic analysis based on 397 concatenated core genes distinguished A. aphrophilus and A. actinomycetemcomitans. The latter was in turn divided into 5 clades: clade b (serotype b), clade c (serotype c), clade e/f (serotypes e and f), clade a/d (serotypes a and d), and clade e′ (serotype e strains). Accessory genes accounted for 14.1% to 23.2% of the A. actinomycetemcomitans genomes, with a majority belonging to the category of poorly characterized by Cluster of Orthologous Groups classification. These accessory genes were often organized into genomic islands (n = 387) with base composition biases, suggesting their acquisitions via horizontal gene transfer. There was a greater degree of similarity in gene content and genomic islands among strains within clades than between clades. Strains of clade e′ isolated from human were found to be missing the genomic island that carries genes encoding cytolethal distending toxins. Taken together, the results suggest a pattern of sequential divergence, starting from the separation of A. aphrophilus and A. actinomycetemcomitans through gain and loss of genes and ending with the divergence of the latter species into distinct clades and serotypes. With differing constellations of genes, the A. actinomycetemcomitans clades may have evolved distinct adaptation strategies to the human oral cavity.</description><subject>Aggregatibacter actinomycetemcomitans</subject><subject>Aggregatibacter actinomycetemcomitans - genetics</subject><subject>Aggregatibacter aphrophilus - genetics</subject><subject>Annotations</subject><subject>Bacterial Toxins - genetics</subject><subject>Base composition</subject><subject>Base Composition - genetics</subject><subject>Dentistry</subject><subject>Divergence</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Concatenated - genetics</subject><subject>Evolution, Molecular</subject><subject>Gene transfer</subject><subject>Gene Transfer, Horizontal - genetics</subject><subject>Genes</subject><subject>Genes, Bacterial - genetics</subject><subject>Genetic Heterogeneity</subject><subject>Genetic Speciation</subject><subject>Genetic Variation - genetics</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Genomic islands</subject><subject>Genomic Islands - genetics</subject><subject>Genomics</subject><subject>Gum disease</subject><subject>Humans</subject><subject>Mouth - microbiology</subject><subject>Oral cavity</subject><subject>Pathogenesis</subject><subject>Periodontitis</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Protein Subunits - genetics</subject><subject>Research Reports</subject><subject>Sequence Analysis, DNA</subject><subject>Serogroup</subject><subject>Serotypes</subject><subject>Studies</subject><issn>0022-0345</issn><issn>1544-0591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtP3DAUha2qVRmm3bOqRuqmm8D1O95UIAoUCakb9pbj3KRGSUztZCT-fT0aSikSUjf24nz33Mch5IjCMaVanwAwBlxIKhXUVPE3ZEWlEBVIQ9-S1U6udvoBOcz5DoAaVvP35IApwUAbuSKnF9s4LHOIk0sPm29hi6nHyeMmdpuzvk_Yuzk0zs-YNuUNUxwfPM44-jiG2U35A3nXuSHjx8d_TW4vL27Pv1c3P66uz89uKi-MnCtOUbfoRc200eiM8rxjXdsZqT20Xc2Z8bVnjdYOeceVQ0fbRlJgrWkA-Zp83dveL82IrcdpTm6w9ymMZXAbXbD_KlP4afu4tUIDKEWLwZdHgxR_LZhnO4bscRjchHHJlmrFuDLC_A8qqTFUltOvyecX6F1c0lQOYRkvjcEIEIWCPeVTzDlh9zQ3BbsL0r4MspR8er7vU8Gf5ApQ7YHsevzb9VXD3y7Npic</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Kittichotirat, W.</creator><creator>Bumgarner, R.E.</creator><creator>Chen, C.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>U9A</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>201601</creationdate><title>Evolutionary Divergence of Aggregatibacter actinomycetemcomitans</title><author>Kittichotirat, W. ; Bumgarner, R.E. ; Chen, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-31e7dec482797ea96c3f2fdf957c0df8329c8c2b77ae3f36aea1db5102d9b0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aggregatibacter actinomycetemcomitans</topic><topic>Aggregatibacter actinomycetemcomitans - genetics</topic><topic>Aggregatibacter aphrophilus - genetics</topic><topic>Annotations</topic><topic>Bacterial Toxins - genetics</topic><topic>Base composition</topic><topic>Base Composition - genetics</topic><topic>Dentistry</topic><topic>Divergence</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Concatenated - genetics</topic><topic>Evolution, Molecular</topic><topic>Gene transfer</topic><topic>Gene Transfer, Horizontal - genetics</topic><topic>Genes</topic><topic>Genes, Bacterial - genetics</topic><topic>Genetic Heterogeneity</topic><topic>Genetic Speciation</topic><topic>Genetic Variation - genetics</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Genomic islands</topic><topic>Genomic Islands - genetics</topic><topic>Genomics</topic><topic>Gum disease</topic><topic>Humans</topic><topic>Mouth - microbiology</topic><topic>Oral cavity</topic><topic>Pathogenesis</topic><topic>Periodontitis</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Protein Subunits - genetics</topic><topic>Research Reports</topic><topic>Sequence Analysis, DNA</topic><topic>Serogroup</topic><topic>Serotypes</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kittichotirat, W.</creatorcontrib><creatorcontrib>Bumgarner, R.E.</creatorcontrib><creatorcontrib>Chen, C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of dental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kittichotirat, W.</au><au>Bumgarner, R.E.</au><au>Chen, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Divergence of Aggregatibacter actinomycetemcomitans</atitle><jtitle>Journal of dental research</jtitle><addtitle>J Dent Res</addtitle><date>2016-01</date><risdate>2016</risdate><volume>95</volume><issue>1</issue><spage>94</spage><epage>101</epage><pages>94-101</pages><issn>0022-0345</issn><eissn>1544-0591</eissn><abstract>Gram-negative facultative Aggregatibacter actinomycetemcomitans is an oral pathogen associated with periodontitis. The genetic heterogeneity among A. actinomycetemcomitans strains has been long recognized. This study provides a comprehensive genomic analysis of A. actinomycetemcomitans and the closely related nonpathogenic Aggregatibacter aphrophilus. Whole genome sequencing by Illumina MiSeq platform was performed for 31 A. actinomycetemcomitans and 2 A. aphrophilus strains. Sequence similarity analysis shows a total of 3,220 unique genes across the 2 species, where 1,550 are core genes present in all genomes and 1,670 are variable genes (accessory genes) missing in at least 1 genome. Phylogenetic analysis based on 397 concatenated core genes distinguished A. aphrophilus and A. actinomycetemcomitans. The latter was in turn divided into 5 clades: clade b (serotype b), clade c (serotype c), clade e/f (serotypes e and f), clade a/d (serotypes a and d), and clade e′ (serotype e strains). Accessory genes accounted for 14.1% to 23.2% of the A. actinomycetemcomitans genomes, with a majority belonging to the category of poorly characterized by Cluster of Orthologous Groups classification. These accessory genes were often organized into genomic islands (n = 387) with base composition biases, suggesting their acquisitions via horizontal gene transfer. There was a greater degree of similarity in gene content and genomic islands among strains within clades than between clades. Strains of clade e′ isolated from human were found to be missing the genomic island that carries genes encoding cytolethal distending toxins. Taken together, the results suggest a pattern of sequential divergence, starting from the separation of A. aphrophilus and A. actinomycetemcomitans through gain and loss of genes and ending with the divergence of the latter species into distinct clades and serotypes. With differing constellations of genes, the A. actinomycetemcomitans clades may have evolved distinct adaptation strategies to the human oral cavity.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>26420795</pmid><doi>10.1177/0022034515608163</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0345 |
ispartof | Journal of dental research, 2016-01, Vol.95 (1), p.94-101 |
issn | 0022-0345 1544-0591 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4700661 |
source | MEDLINE; SAGE Complete; Alma/SFX Local Collection |
subjects | Aggregatibacter actinomycetemcomitans Aggregatibacter actinomycetemcomitans - genetics Aggregatibacter aphrophilus - genetics Annotations Bacterial Toxins - genetics Base composition Base Composition - genetics Dentistry Divergence DNA, Bacterial - genetics DNA, Concatenated - genetics Evolution, Molecular Gene transfer Gene Transfer, Horizontal - genetics Genes Genes, Bacterial - genetics Genetic Heterogeneity Genetic Speciation Genetic Variation - genetics Genome, Bacterial - genetics Genomes Genomic analysis Genomic islands Genomic Islands - genetics Genomics Gum disease Humans Mouth - microbiology Oral cavity Pathogenesis Periodontitis Phylogenetics Phylogeny Protein Subunits - genetics Research Reports Sequence Analysis, DNA Serogroup Serotypes Studies |
title | Evolutionary Divergence of Aggregatibacter actinomycetemcomitans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Divergence%20of%20Aggregatibacter%20actinomycetemcomitans&rft.jtitle=Journal%20of%20dental%20research&rft.au=Kittichotirat,%20W.&rft.date=2016-01&rft.volume=95&rft.issue=1&rft.spage=94&rft.epage=101&rft.pages=94-101&rft.issn=0022-0345&rft.eissn=1544-0591&rft_id=info:doi/10.1177/0022034515608163&rft_dat=%3Cproquest_pubme%3E1751991520%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300609404&rft_id=info:pmid/26420795&rft_sage_id=10.1177_0022034515608163&rfr_iscdi=true |