Anomalous temperature-dependent spin-valley polarization in monolayer WS2
Single layers of transition metal dichalcogenides (TMDs) are direct gap semiconductors with nondegenerate valley indices. An intriguing possibility for these materials is the use of their valley index as an alternate state variable. Several limitations to such a utility include strong intervalley sc...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-01, Vol.6 (1), p.18885-18885, Article 18885 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18885 |
---|---|
container_issue | 1 |
container_start_page | 18885 |
container_title | Scientific reports |
container_volume | 6 |
creator | Hanbicki, A.T. Kioseoglou, G. Currie, M. Hellberg, C. Stephen McCreary, K.M. Friedman, A.L. Jonker, B.T. |
description | Single layers of transition metal dichalcogenides (TMDs) are direct gap semiconductors with nondegenerate valley indices. An intriguing possibility for these materials is the use of their valley index as an alternate state variable. Several limitations to such a utility include strong intervalley scattering, as well as multiparticle interactions leading to multiple emission channels. We prepare single-layer WS
2
films such that the photoluminescence is from either the neutral or charged exciton (trion). After excitation with circularly polarized light, the neutral exciton emission has zero polarization. However, the trion emission has a large polarization (28%) at room temperature. The trion emission also has a unique, non-monotonic temperature dependence that is a consequence of the multiparticle nature of the trion. This temperature dependence enables us to determine that intervalley scattering, electron-hole radiative recombination and Auger processes are the dominant mechanisms at work in this system. Because this dependence involves trion systems, one can use gate voltages to modulate the polarization (or intensity) emitted from TMD structures. |
doi_str_mv | 10.1038/srep18885 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4700440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899038223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-ffc6ae7b4fab97bf5ae730a6bca967f2df950f76c22c3d2f3b797f1b27f0193b3</originalsourceid><addsrcrecordid>eNplkVtLwzAYhoMoTuYu_ANS8EaFak5tmhthDA-DgRcqXoa0TWZHm9SkHcxfb3RzTM1NDt_D-735XgBOELxCkGTX3qkWZVmW7IEjDGkSY4Lx_s55AEbeL2BYCeYU8UMwwCnDGWfpEZiOjW1kbXsfdapplZNd71RcqlaZUpku8m1l4qWsa7WKWltLV33IrrImqkzUWBNeVspFr0_4GBxoWXs12uxD8HJ3-zx5iGeP99PJeBYXlNAu1rpIpWI51TLnLNdJuBAo07yQPGUal5onULO0wLggJdYkZ5xplGOmIeIkJ0Nws9Zt-7xRZRFMOlmL1lWNdCthZSV-V0z1JuZ2KSiDkFIYBM43As6-98p3oql8oepaGhXmIBBLKMwS_o2e_UEXtncmfE-gjPMwfoxJoC7WVOGsD3HorRkExVdGYptRYE933W_Jn0QCcLkGfCiZuXI7Lf-pfQI04Z0d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899038223</pqid></control><display><type>article</type><title>Anomalous temperature-dependent spin-valley polarization in monolayer WS2</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hanbicki, A.T. ; Kioseoglou, G. ; Currie, M. ; Hellberg, C. Stephen ; McCreary, K.M. ; Friedman, A.L. ; Jonker, B.T.</creator><creatorcontrib>Hanbicki, A.T. ; Kioseoglou, G. ; Currie, M. ; Hellberg, C. Stephen ; McCreary, K.M. ; Friedman, A.L. ; Jonker, B.T.</creatorcontrib><description>Single layers of transition metal dichalcogenides (TMDs) are direct gap semiconductors with nondegenerate valley indices. An intriguing possibility for these materials is the use of their valley index as an alternate state variable. Several limitations to such a utility include strong intervalley scattering, as well as multiparticle interactions leading to multiple emission channels. We prepare single-layer WS
2
films such that the photoluminescence is from either the neutral or charged exciton (trion). After excitation with circularly polarized light, the neutral exciton emission has zero polarization. However, the trion emission has a large polarization (28%) at room temperature. The trion emission also has a unique, non-monotonic temperature dependence that is a consequence of the multiparticle nature of the trion. This temperature dependence enables us to determine that intervalley scattering, electron-hole radiative recombination and Auger processes are the dominant mechanisms at work in this system. Because this dependence involves trion systems, one can use gate voltages to modulate the polarization (or intensity) emitted from TMD structures.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep18885</identifier><identifier>PMID: 26728976</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1001 ; 639/925/357/1018 ; Emissions ; Humanities and Social Sciences ; Luminescence ; multidisciplinary ; Photons ; Polarization ; Polarized light ; Recombination ; Science ; Temperature ; Temperature effects</subject><ispartof>Scientific reports, 2016-01, Vol.6 (1), p.18885-18885, Article 18885</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-ffc6ae7b4fab97bf5ae730a6bca967f2df950f76c22c3d2f3b797f1b27f0193b3</citedby><cites>FETCH-LOGICAL-c434t-ffc6ae7b4fab97bf5ae730a6bca967f2df950f76c22c3d2f3b797f1b27f0193b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700440/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700440/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26728976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanbicki, A.T.</creatorcontrib><creatorcontrib>Kioseoglou, G.</creatorcontrib><creatorcontrib>Currie, M.</creatorcontrib><creatorcontrib>Hellberg, C. Stephen</creatorcontrib><creatorcontrib>McCreary, K.M.</creatorcontrib><creatorcontrib>Friedman, A.L.</creatorcontrib><creatorcontrib>Jonker, B.T.</creatorcontrib><title>Anomalous temperature-dependent spin-valley polarization in monolayer WS2</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Single layers of transition metal dichalcogenides (TMDs) are direct gap semiconductors with nondegenerate valley indices. An intriguing possibility for these materials is the use of their valley index as an alternate state variable. Several limitations to such a utility include strong intervalley scattering, as well as multiparticle interactions leading to multiple emission channels. We prepare single-layer WS
2
films such that the photoluminescence is from either the neutral or charged exciton (trion). After excitation with circularly polarized light, the neutral exciton emission has zero polarization. However, the trion emission has a large polarization (28%) at room temperature. The trion emission also has a unique, non-monotonic temperature dependence that is a consequence of the multiparticle nature of the trion. This temperature dependence enables us to determine that intervalley scattering, electron-hole radiative recombination and Auger processes are the dominant mechanisms at work in this system. Because this dependence involves trion systems, one can use gate voltages to modulate the polarization (or intensity) emitted from TMD structures.</description><subject>639/766/119/1001</subject><subject>639/925/357/1018</subject><subject>Emissions</subject><subject>Humanities and Social Sciences</subject><subject>Luminescence</subject><subject>multidisciplinary</subject><subject>Photons</subject><subject>Polarization</subject><subject>Polarized light</subject><subject>Recombination</subject><subject>Science</subject><subject>Temperature</subject><subject>Temperature effects</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkVtLwzAYhoMoTuYu_ANS8EaFak5tmhthDA-DgRcqXoa0TWZHm9SkHcxfb3RzTM1NDt_D-735XgBOELxCkGTX3qkWZVmW7IEjDGkSY4Lx_s55AEbeL2BYCeYU8UMwwCnDGWfpEZiOjW1kbXsfdapplZNd71RcqlaZUpku8m1l4qWsa7WKWltLV33IrrImqkzUWBNeVspFr0_4GBxoWXs12uxD8HJ3-zx5iGeP99PJeBYXlNAu1rpIpWI51TLnLNdJuBAo07yQPGUal5onULO0wLggJdYkZ5xplGOmIeIkJ0Nws9Zt-7xRZRFMOlmL1lWNdCthZSV-V0z1JuZ2KSiDkFIYBM43As6-98p3oql8oepaGhXmIBBLKMwS_o2e_UEXtncmfE-gjPMwfoxJoC7WVOGsD3HorRkExVdGYptRYE933W_Jn0QCcLkGfCiZuXI7Lf-pfQI04Z0d</recordid><startdate>20160105</startdate><enddate>20160105</enddate><creator>Hanbicki, A.T.</creator><creator>Kioseoglou, G.</creator><creator>Currie, M.</creator><creator>Hellberg, C. Stephen</creator><creator>McCreary, K.M.</creator><creator>Friedman, A.L.</creator><creator>Jonker, B.T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160105</creationdate><title>Anomalous temperature-dependent spin-valley polarization in monolayer WS2</title><author>Hanbicki, A.T. ; Kioseoglou, G. ; Currie, M. ; Hellberg, C. Stephen ; McCreary, K.M. ; Friedman, A.L. ; Jonker, B.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-ffc6ae7b4fab97bf5ae730a6bca967f2df950f76c22c3d2f3b797f1b27f0193b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/766/119/1001</topic><topic>639/925/357/1018</topic><topic>Emissions</topic><topic>Humanities and Social Sciences</topic><topic>Luminescence</topic><topic>multidisciplinary</topic><topic>Photons</topic><topic>Polarization</topic><topic>Polarized light</topic><topic>Recombination</topic><topic>Science</topic><topic>Temperature</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanbicki, A.T.</creatorcontrib><creatorcontrib>Kioseoglou, G.</creatorcontrib><creatorcontrib>Currie, M.</creatorcontrib><creatorcontrib>Hellberg, C. Stephen</creatorcontrib><creatorcontrib>McCreary, K.M.</creatorcontrib><creatorcontrib>Friedman, A.L.</creatorcontrib><creatorcontrib>Jonker, B.T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanbicki, A.T.</au><au>Kioseoglou, G.</au><au>Currie, M.</au><au>Hellberg, C. Stephen</au><au>McCreary, K.M.</au><au>Friedman, A.L.</au><au>Jonker, B.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomalous temperature-dependent spin-valley polarization in monolayer WS2</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-01-05</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>18885</spage><epage>18885</epage><pages>18885-18885</pages><artnum>18885</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Single layers of transition metal dichalcogenides (TMDs) are direct gap semiconductors with nondegenerate valley indices. An intriguing possibility for these materials is the use of their valley index as an alternate state variable. Several limitations to such a utility include strong intervalley scattering, as well as multiparticle interactions leading to multiple emission channels. We prepare single-layer WS
2
films such that the photoluminescence is from either the neutral or charged exciton (trion). After excitation with circularly polarized light, the neutral exciton emission has zero polarization. However, the trion emission has a large polarization (28%) at room temperature. The trion emission also has a unique, non-monotonic temperature dependence that is a consequence of the multiparticle nature of the trion. This temperature dependence enables us to determine that intervalley scattering, electron-hole radiative recombination and Auger processes are the dominant mechanisms at work in this system. Because this dependence involves trion systems, one can use gate voltages to modulate the polarization (or intensity) emitted from TMD structures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26728976</pmid><doi>10.1038/srep18885</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-01, Vol.6 (1), p.18885-18885, Article 18885 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4700440 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/766/119/1001 639/925/357/1018 Emissions Humanities and Social Sciences Luminescence multidisciplinary Photons Polarization Polarized light Recombination Science Temperature Temperature effects |
title | Anomalous temperature-dependent spin-valley polarization in monolayer WS2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomalous%20temperature-dependent%20spin-valley%20polarization%20in%20monolayer%20WS2&rft.jtitle=Scientific%20reports&rft.au=Hanbicki,%20A.T.&rft.date=2016-01-05&rft.volume=6&rft.issue=1&rft.spage=18885&rft.epage=18885&rft.pages=18885-18885&rft.artnum=18885&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep18885&rft_dat=%3Cproquest_pubme%3E1899038223%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899038223&rft_id=info:pmid/26728976&rfr_iscdi=true |