Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila

Animals can detect and consume nutritive sugars without the influence of taste. However, the identity of the taste-independent nutrient sensor and the mechanism by which animals respond to the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the Drosophila bra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2015-07, Vol.87 (1), p.139-151
Hauptverfasser: Dus, Monica, Lai, Jason Sih-Yu, Gunapala, Keith M., Min, Soohong, Tayler, Timothy D., Hergarden, Anne C., Geraud, Eliot, Joseph, Christina M., Suh, Greg S.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue 1
container_start_page 139
container_title Neuron (Cambridge, Mass.)
container_volume 87
creator Dus, Monica
Lai, Jason Sih-Yu
Gunapala, Keith M.
Min, Soohong
Tayler, Timothy D.
Hergarden, Anne C.
Geraud, Eliot
Joseph, Christina M.
Suh, Greg S.B.
description Animals can detect and consume nutritive sugars without the influence of taste. However, the identity of the taste-independent nutrient sensor and the mechanism by which animals respond to the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the Drosophila brain that produce Diuretic hormone 44 (Dh44), a homolog of the mammalian corticotropin-releasing hormone (CRH), were specifically activated by nutritive sugars. Flies in which the activity of these neurons or the expression of Dh44 was disrupted failed to select nutritive sugars. Manipulation of the function of Dh44 receptors had a similar effect. Notably, artificial activation of Dh44 receptor-1 neurons resulted in proboscis extensions and frequent episodes of excretion. Conversely, reduced Dh44 activity led to decreased excretion. Together, these actions facilitate ingestion and digestion of nutritive foods. We propose that the Dh44 system directs the detection and consumption of nutritive sugars through a positive feedback loop. •Six Dh44+ cells in the brain are essential for post-ingestive nutrient selection•Dh44 neurons are specifically activated by nutritive sugars found in the hemolymph•Activation of the Dh44 circuit results in increased proboscis extension and excretion•The brain-gut axis connects the ability to detect nutrients with effector mechanisms Sugar is sweet and nutritive. The taste cells that detect its sweetness were identified, but the sensor that detects its nutritional value is unknown. Dus et al. identify a brain-gut microcircuit expressing Dh44/CRH as the nutrient sensor.
doi_str_mv 10.1016/j.neuron.2015.05.032
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4697866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627315004717</els_id><sourcerecordid>3732524531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-d7ab899162584c0ffceb671b980326ed569b14a4f3fa2abb5975bd58145728d93</originalsourceid><addsrcrecordid>eNqFUclqHDEUFCEhHjv5gxAacvGlJ9qXS2C8G0xysH0WarXao6FHmkjdxvn7qD2Ot0MMDyT06pVeVQHwBcE5goh_X82DG1MMcwwRm8NSBL8DMwSVqClS6j2YQal4zbEgO2A35xWEiDKFPoIdzKGgENIZuPw5Dsm7MFSXLuSYKh-qYemqg2TK7cgnZ4d8_7Kwg4-hit1Tvz4dh2px5_M0dZRijpul780n8KEzfXafH849cH1yfHV4Vl_8Oj0_XFzUlnM41K0wjVQKccwktbDrrGu4QI2SRQl3LeOqQdTQjnQGm6ZhSrCmZbKIEFi2iuyBH1vezdisXWuLimR6vUl-bdIfHY3XLzvBL_VNvNWUKyE5LwT7DwQp_h5dHvTaZ-v63gQXx6yRoFwqhhR-G8oVEQQRxAr02yvoKo4pFCcmFJZQEYwKim5RtviWk-se90ZQTwHrld4GrKeANSxFpj2-Ptf8OPQv0SdTXHH-1ruksy35WtfeZ6nb6P__w18rJ7f5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692809321</pqid></control><display><type>article</type><title>Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dus, Monica ; Lai, Jason Sih-Yu ; Gunapala, Keith M. ; Min, Soohong ; Tayler, Timothy D. ; Hergarden, Anne C. ; Geraud, Eliot ; Joseph, Christina M. ; Suh, Greg S.B.</creator><creatorcontrib>Dus, Monica ; Lai, Jason Sih-Yu ; Gunapala, Keith M. ; Min, Soohong ; Tayler, Timothy D. ; Hergarden, Anne C. ; Geraud, Eliot ; Joseph, Christina M. ; Suh, Greg S.B.</creatorcontrib><description>Animals can detect and consume nutritive sugars without the influence of taste. However, the identity of the taste-independent nutrient sensor and the mechanism by which animals respond to the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the Drosophila brain that produce Diuretic hormone 44 (Dh44), a homolog of the mammalian corticotropin-releasing hormone (CRH), were specifically activated by nutritive sugars. Flies in which the activity of these neurons or the expression of Dh44 was disrupted failed to select nutritive sugars. Manipulation of the function of Dh44 receptors had a similar effect. Notably, artificial activation of Dh44 receptor-1 neurons resulted in proboscis extensions and frequent episodes of excretion. Conversely, reduced Dh44 activity led to decreased excretion. Together, these actions facilitate ingestion and digestion of nutritive foods. We propose that the Dh44 system directs the detection and consumption of nutritive sugars through a positive feedback loop. •Six Dh44+ cells in the brain are essential for post-ingestive nutrient selection•Dh44 neurons are specifically activated by nutritive sugars found in the hemolymph•Activation of the Dh44 circuit results in increased proboscis extension and excretion•The brain-gut axis connects the ability to detect nutrients with effector mechanisms Sugar is sweet and nutritive. The taste cells that detect its sweetness were identified, but the sensor that detects its nutritional value is unknown. Dus et al. identify a brain-gut microcircuit expressing Dh44/CRH as the nutrient sensor.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2015.05.032</identifier><identifier>PMID: 26074004</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Behavior ; Brain - metabolism ; Drosophila ; Drosophila Proteins - drug effects ; Drosophila Proteins - metabolism ; Experiments ; Feedback, Sensory ; Feeding Behavior - physiology ; Food ; Fructose - pharmacology ; Glucose ; Glucose - pharmacology ; Grants ; Insect Hormones - metabolism ; Insects ; Kinases ; Mammals ; Metabolism ; Motility ; Neurons ; Neurons - metabolism ; Neuropeptides ; Neurosecretion - drug effects ; Nutritive Sweeteners - metabolism ; Nutritive Sweeteners - pharmacology ; Receptors, Cell Surface - drug effects ; Receptors, Cell Surface - metabolism ; Sensors ; Trehalose - pharmacology</subject><ispartof>Neuron (Cambridge, Mass.), 2015-07, Vol.87 (1), p.139-151</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jul 1, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-d7ab899162584c0ffceb671b980326ed569b14a4f3fa2abb5975bd58145728d93</citedby><cites>FETCH-LOGICAL-c660t-d7ab899162584c0ffceb671b980326ed569b14a4f3fa2abb5975bd58145728d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627315004717$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26074004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dus, Monica</creatorcontrib><creatorcontrib>Lai, Jason Sih-Yu</creatorcontrib><creatorcontrib>Gunapala, Keith M.</creatorcontrib><creatorcontrib>Min, Soohong</creatorcontrib><creatorcontrib>Tayler, Timothy D.</creatorcontrib><creatorcontrib>Hergarden, Anne C.</creatorcontrib><creatorcontrib>Geraud, Eliot</creatorcontrib><creatorcontrib>Joseph, Christina M.</creatorcontrib><creatorcontrib>Suh, Greg S.B.</creatorcontrib><title>Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Animals can detect and consume nutritive sugars without the influence of taste. However, the identity of the taste-independent nutrient sensor and the mechanism by which animals respond to the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the Drosophila brain that produce Diuretic hormone 44 (Dh44), a homolog of the mammalian corticotropin-releasing hormone (CRH), were specifically activated by nutritive sugars. Flies in which the activity of these neurons or the expression of Dh44 was disrupted failed to select nutritive sugars. Manipulation of the function of Dh44 receptors had a similar effect. Notably, artificial activation of Dh44 receptor-1 neurons resulted in proboscis extensions and frequent episodes of excretion. Conversely, reduced Dh44 activity led to decreased excretion. Together, these actions facilitate ingestion and digestion of nutritive foods. We propose that the Dh44 system directs the detection and consumption of nutritive sugars through a positive feedback loop. •Six Dh44+ cells in the brain are essential for post-ingestive nutrient selection•Dh44 neurons are specifically activated by nutritive sugars found in the hemolymph•Activation of the Dh44 circuit results in increased proboscis extension and excretion•The brain-gut axis connects the ability to detect nutrients with effector mechanisms Sugar is sweet and nutritive. The taste cells that detect its sweetness were identified, but the sensor that detects its nutritional value is unknown. Dus et al. identify a brain-gut microcircuit expressing Dh44/CRH as the nutrient sensor.</description><subject>Animals</subject><subject>Behavior</subject><subject>Brain - metabolism</subject><subject>Drosophila</subject><subject>Drosophila Proteins - drug effects</subject><subject>Drosophila Proteins - metabolism</subject><subject>Experiments</subject><subject>Feedback, Sensory</subject><subject>Feeding Behavior - physiology</subject><subject>Food</subject><subject>Fructose - pharmacology</subject><subject>Glucose</subject><subject>Glucose - pharmacology</subject><subject>Grants</subject><subject>Insect Hormones - metabolism</subject><subject>Insects</subject><subject>Kinases</subject><subject>Mammals</subject><subject>Metabolism</subject><subject>Motility</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neuropeptides</subject><subject>Neurosecretion - drug effects</subject><subject>Nutritive Sweeteners - metabolism</subject><subject>Nutritive Sweeteners - pharmacology</subject><subject>Receptors, Cell Surface - drug effects</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Sensors</subject><subject>Trehalose - pharmacology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUclqHDEUFCEhHjv5gxAacvGlJ9qXS2C8G0xysH0WarXao6FHmkjdxvn7qD2Ot0MMDyT06pVeVQHwBcE5goh_X82DG1MMcwwRm8NSBL8DMwSVqClS6j2YQal4zbEgO2A35xWEiDKFPoIdzKGgENIZuPw5Dsm7MFSXLuSYKh-qYemqg2TK7cgnZ4d8_7Kwg4-hit1Tvz4dh2px5_M0dZRijpul780n8KEzfXafH849cH1yfHV4Vl_8Oj0_XFzUlnM41K0wjVQKccwktbDrrGu4QI2SRQl3LeOqQdTQjnQGm6ZhSrCmZbKIEFi2iuyBH1vezdisXWuLimR6vUl-bdIfHY3XLzvBL_VNvNWUKyE5LwT7DwQp_h5dHvTaZ-v63gQXx6yRoFwqhhR-G8oVEQQRxAr02yvoKo4pFCcmFJZQEYwKim5RtviWk-se90ZQTwHrld4GrKeANSxFpj2-Ptf8OPQv0SdTXHH-1ruksy35WtfeZ6nb6P__w18rJ7f5</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Dus, Monica</creator><creator>Lai, Jason Sih-Yu</creator><creator>Gunapala, Keith M.</creator><creator>Min, Soohong</creator><creator>Tayler, Timothy D.</creator><creator>Hergarden, Anne C.</creator><creator>Geraud, Eliot</creator><creator>Joseph, Christina M.</creator><creator>Suh, Greg S.B.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7SS</scope><scope>5PM</scope></search><sort><creationdate>20150701</creationdate><title>Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila</title><author>Dus, Monica ; Lai, Jason Sih-Yu ; Gunapala, Keith M. ; Min, Soohong ; Tayler, Timothy D. ; Hergarden, Anne C. ; Geraud, Eliot ; Joseph, Christina M. ; Suh, Greg S.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-d7ab899162584c0ffceb671b980326ed569b14a4f3fa2abb5975bd58145728d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Behavior</topic><topic>Brain - metabolism</topic><topic>Drosophila</topic><topic>Drosophila Proteins - drug effects</topic><topic>Drosophila Proteins - metabolism</topic><topic>Experiments</topic><topic>Feedback, Sensory</topic><topic>Feeding Behavior - physiology</topic><topic>Food</topic><topic>Fructose - pharmacology</topic><topic>Glucose</topic><topic>Glucose - pharmacology</topic><topic>Grants</topic><topic>Insect Hormones - metabolism</topic><topic>Insects</topic><topic>Kinases</topic><topic>Mammals</topic><topic>Metabolism</topic><topic>Motility</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neuropeptides</topic><topic>Neurosecretion - drug effects</topic><topic>Nutritive Sweeteners - metabolism</topic><topic>Nutritive Sweeteners - pharmacology</topic><topic>Receptors, Cell Surface - drug effects</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Sensors</topic><topic>Trehalose - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dus, Monica</creatorcontrib><creatorcontrib>Lai, Jason Sih-Yu</creatorcontrib><creatorcontrib>Gunapala, Keith M.</creatorcontrib><creatorcontrib>Min, Soohong</creatorcontrib><creatorcontrib>Tayler, Timothy D.</creatorcontrib><creatorcontrib>Hergarden, Anne C.</creatorcontrib><creatorcontrib>Geraud, Eliot</creatorcontrib><creatorcontrib>Joseph, Christina M.</creatorcontrib><creatorcontrib>Suh, Greg S.B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dus, Monica</au><au>Lai, Jason Sih-Yu</au><au>Gunapala, Keith M.</au><au>Min, Soohong</au><au>Tayler, Timothy D.</au><au>Hergarden, Anne C.</au><au>Geraud, Eliot</au><au>Joseph, Christina M.</au><au>Suh, Greg S.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>87</volume><issue>1</issue><spage>139</spage><epage>151</epage><pages>139-151</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Animals can detect and consume nutritive sugars without the influence of taste. However, the identity of the taste-independent nutrient sensor and the mechanism by which animals respond to the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the Drosophila brain that produce Diuretic hormone 44 (Dh44), a homolog of the mammalian corticotropin-releasing hormone (CRH), were specifically activated by nutritive sugars. Flies in which the activity of these neurons or the expression of Dh44 was disrupted failed to select nutritive sugars. Manipulation of the function of Dh44 receptors had a similar effect. Notably, artificial activation of Dh44 receptor-1 neurons resulted in proboscis extensions and frequent episodes of excretion. Conversely, reduced Dh44 activity led to decreased excretion. Together, these actions facilitate ingestion and digestion of nutritive foods. We propose that the Dh44 system directs the detection and consumption of nutritive sugars through a positive feedback loop. •Six Dh44+ cells in the brain are essential for post-ingestive nutrient selection•Dh44 neurons are specifically activated by nutritive sugars found in the hemolymph•Activation of the Dh44 circuit results in increased proboscis extension and excretion•The brain-gut axis connects the ability to detect nutrients with effector mechanisms Sugar is sweet and nutritive. The taste cells that detect its sweetness were identified, but the sensor that detects its nutritional value is unknown. Dus et al. identify a brain-gut microcircuit expressing Dh44/CRH as the nutrient sensor.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26074004</pmid><doi>10.1016/j.neuron.2015.05.032</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2015-07, Vol.87 (1), p.139-151
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4697866
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Behavior
Brain - metabolism
Drosophila
Drosophila Proteins - drug effects
Drosophila Proteins - metabolism
Experiments
Feedback, Sensory
Feeding Behavior - physiology
Food
Fructose - pharmacology
Glucose
Glucose - pharmacology
Grants
Insect Hormones - metabolism
Insects
Kinases
Mammals
Metabolism
Motility
Neurons
Neurons - metabolism
Neuropeptides
Neurosecretion - drug effects
Nutritive Sweeteners - metabolism
Nutritive Sweeteners - pharmacology
Receptors, Cell Surface - drug effects
Receptors, Cell Surface - metabolism
Sensors
Trehalose - pharmacology
title Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nutrient%20Sensor%20in%20the%20Brain%20Directs%20the%20Action%20of%20the%20Brain-Gut%20Axis%20in%20Drosophila&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Dus,%20Monica&rft.date=2015-07-01&rft.volume=87&rft.issue=1&rft.spage=139&rft.epage=151&rft.pages=139-151&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2015.05.032&rft_dat=%3Cproquest_pubme%3E3732524531%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692809321&rft_id=info:pmid/26074004&rft_els_id=S0896627315004717&rfr_iscdi=true