A new computational model for human thyroid cancer enhances the preoperative diagnostic efficacy
Considering the high rate of missed diagnosis and delayed treatments for thyroid cancer, an effective systematic model for the differential diagnosis is highly needed. Thus we analyzed the data on the clinicopathological characteristics, routine laboratory tests and imaging examinations in a cohort...
Gespeichert in:
Veröffentlicht in: | Oncotarget 2015-09, Vol.6 (29), p.28463-28477 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28477 |
---|---|
container_issue | 29 |
container_start_page | 28463 |
container_title | Oncotarget |
container_volume | 6 |
creator | Li, Tuo Sheng, Jianguo Li, Weiqin Zhang, Xin Yu, Hongyu Chen, Xueyun Zhang, Jianquan Cai, Quancai Shi, Yongquan Liu, Zhimin |
description | Considering the high rate of missed diagnosis and delayed treatments for thyroid cancer, an effective systematic model for the differential diagnosis is highly needed. Thus we analyzed the data on the clinicopathological characteristics, routine laboratory tests and imaging examinations in a cohort of 13,980 patients with thyroid cancer to establish a new diagnostic model for differentiating thyroid cancer in clinical practice. Here, we randomly selected two-thirds of the population to develop the thyroid malignancy risk scoring system (TMRS) for preoperative differentiation between thyroid cancer and benignant thyroid diseases, and then validated its differential diagnostic power in the rest one-third population. The 18 predictors finally enrolled in the TMRS included male gender, clinical manifestations (fever, neck sore, neck lump, palpitations or sweating), laboratory findings (TSH>1.56mIU/L, FT3>5.85pmol/L, TPOAb>14.97IU/ml, TgAb>48.00IU/ml, Tg>34.59μg/L, Ct>64.00ng/L, and CEA>0.41μg/L), and ultrasound features (tumor number≤ 23mm, site, size, echo texture, margins, and shape of neck lymphnodes). The TMRS is validated to be well-calibrated (P = 0.437) and excellently discriminated (AUC = 0.93, 95% CI [0.92, 0.94]), with an accuracy of 83.2%, a sensitivity of 89.3%, a specificity of 81.5%, positive and negative predictive values of 56.8% and 96.6%, positive and negative likelihood ratios of 4.83 and 0.13 in the development cohort, respectively. The TMRS highlights that this differential diagnostic system could help provide accurate preoperative risk stratification for thyroid cancer, and avoid unnecessary over- and under-treatment for such patients. |
doi_str_mv | 10.18632/oncotarget.4691 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4695072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1721349090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-67652e09502bb94b9a01d8bd89116c325a554253b65e39e0f27a98f6b01801213</originalsourceid><addsrcrecordid>eNpVUUtPxCAQJkajRvfuyXD0sgq00HIxMcZXYuJFz0jpdBfTQgWq2X8vq-trLjMZ5nuED6EjSk5pLQp25p3xSYcFpNNSSLqF9qks5ZxxXmz_mffQLMYXkouXVc3kLtpjGc4LUe-j5wvs4B0bP4xT0sl6p3s8-BZ63PmAl9OgHU7LVfC2xUY7AwGDW66HmPeAxwB-hJChb4BbqxfOx2QNhq6zRpvVIdrpdB9htukH6On66vHydn7_cHN3eXE_N4UUaS4qwRkQyQlrGlk2UhPa1k1bS0qFyW4152X23AgOhQTSsUrLuhMNoTWhjBYH6PyLd5yaAVoDLgXdqzHYQYeV8tqq_y_OLtXCv6n8dZxULBOcbAiCf50gJjXYaKDvtQM_RUWrrFJKIkk-JV-nJvgYA3Q_MpSoz2zUbzZrgbW947_2fgDfSRQfnKqOrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721349090</pqid></control><display><type>article</type><title>A new computational model for human thyroid cancer enhances the preoperative diagnostic efficacy</title><source>Freely Accessible Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Li, Tuo ; Sheng, Jianguo ; Li, Weiqin ; Zhang, Xin ; Yu, Hongyu ; Chen, Xueyun ; Zhang, Jianquan ; Cai, Quancai ; Shi, Yongquan ; Liu, Zhimin</creator><creatorcontrib>Li, Tuo ; Sheng, Jianguo ; Li, Weiqin ; Zhang, Xin ; Yu, Hongyu ; Chen, Xueyun ; Zhang, Jianquan ; Cai, Quancai ; Shi, Yongquan ; Liu, Zhimin</creatorcontrib><description>Considering the high rate of missed diagnosis and delayed treatments for thyroid cancer, an effective systematic model for the differential diagnosis is highly needed. Thus we analyzed the data on the clinicopathological characteristics, routine laboratory tests and imaging examinations in a cohort of 13,980 patients with thyroid cancer to establish a new diagnostic model for differentiating thyroid cancer in clinical practice. Here, we randomly selected two-thirds of the population to develop the thyroid malignancy risk scoring system (TMRS) for preoperative differentiation between thyroid cancer and benignant thyroid diseases, and then validated its differential diagnostic power in the rest one-third population. The 18 predictors finally enrolled in the TMRS included male gender, clinical manifestations (fever, neck sore, neck lump, palpitations or sweating), laboratory findings (TSH>1.56mIU/L, FT3>5.85pmol/L, TPOAb>14.97IU/ml, TgAb>48.00IU/ml, Tg>34.59μg/L, Ct>64.00ng/L, and CEA>0.41μg/L), and ultrasound features (tumor number≤ 23mm, site, size, echo texture, margins, and shape of neck lymphnodes). The TMRS is validated to be well-calibrated (P = 0.437) and excellently discriminated (AUC = 0.93, 95% CI [0.92, 0.94]), with an accuracy of 83.2%, a sensitivity of 89.3%, a specificity of 81.5%, positive and negative predictive values of 56.8% and 96.6%, positive and negative likelihood ratios of 4.83 and 0.13 in the development cohort, respectively. The TMRS highlights that this differential diagnostic system could help provide accurate preoperative risk stratification for thyroid cancer, and avoid unnecessary over- and under-treatment for such patients.</description><identifier>ISSN: 1949-2553</identifier><identifier>EISSN: 1949-2553</identifier><identifier>DOI: 10.18632/oncotarget.4691</identifier><identifier>PMID: 26325368</identifier><language>eng</language><publisher>United States: Impact Journals LLC</publisher><subject>Adult ; Clinical Research Paper ; Cohort Studies ; Computational Biology - methods ; Diagnosis, Differential ; Female ; Humans ; Logistic Models ; Male ; Middle Aged ; Models, Biological ; Multivariate Analysis ; Preoperative Period ; Risk Assessment - methods ; Risk Assessment - statistics & numerical data ; Risk Factors ; ROC Curve ; Sex Factors ; Thyroid Diseases - diagnosis ; Thyroid Neoplasms - diagnosis</subject><ispartof>Oncotarget, 2015-09, Vol.6 (29), p.28463-28477</ispartof><rights>Copyright: © 2015 Li et al. 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-67652e09502bb94b9a01d8bd89116c325a554253b65e39e0f27a98f6b01801213</citedby><cites>FETCH-LOGICAL-c396t-67652e09502bb94b9a01d8bd89116c325a554253b65e39e0f27a98f6b01801213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695072/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695072/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26325368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tuo</creatorcontrib><creatorcontrib>Sheng, Jianguo</creatorcontrib><creatorcontrib>Li, Weiqin</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Yu, Hongyu</creatorcontrib><creatorcontrib>Chen, Xueyun</creatorcontrib><creatorcontrib>Zhang, Jianquan</creatorcontrib><creatorcontrib>Cai, Quancai</creatorcontrib><creatorcontrib>Shi, Yongquan</creatorcontrib><creatorcontrib>Liu, Zhimin</creatorcontrib><title>A new computational model for human thyroid cancer enhances the preoperative diagnostic efficacy</title><title>Oncotarget</title><addtitle>Oncotarget</addtitle><description>Considering the high rate of missed diagnosis and delayed treatments for thyroid cancer, an effective systematic model for the differential diagnosis is highly needed. Thus we analyzed the data on the clinicopathological characteristics, routine laboratory tests and imaging examinations in a cohort of 13,980 patients with thyroid cancer to establish a new diagnostic model for differentiating thyroid cancer in clinical practice. Here, we randomly selected two-thirds of the population to develop the thyroid malignancy risk scoring system (TMRS) for preoperative differentiation between thyroid cancer and benignant thyroid diseases, and then validated its differential diagnostic power in the rest one-third population. The 18 predictors finally enrolled in the TMRS included male gender, clinical manifestations (fever, neck sore, neck lump, palpitations or sweating), laboratory findings (TSH>1.56mIU/L, FT3>5.85pmol/L, TPOAb>14.97IU/ml, TgAb>48.00IU/ml, Tg>34.59μg/L, Ct>64.00ng/L, and CEA>0.41μg/L), and ultrasound features (tumor number≤ 23mm, site, size, echo texture, margins, and shape of neck lymphnodes). The TMRS is validated to be well-calibrated (P = 0.437) and excellently discriminated (AUC = 0.93, 95% CI [0.92, 0.94]), with an accuracy of 83.2%, a sensitivity of 89.3%, a specificity of 81.5%, positive and negative predictive values of 56.8% and 96.6%, positive and negative likelihood ratios of 4.83 and 0.13 in the development cohort, respectively. The TMRS highlights that this differential diagnostic system could help provide accurate preoperative risk stratification for thyroid cancer, and avoid unnecessary over- and under-treatment for such patients.</description><subject>Adult</subject><subject>Clinical Research Paper</subject><subject>Cohort Studies</subject><subject>Computational Biology - methods</subject><subject>Diagnosis, Differential</subject><subject>Female</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Multivariate Analysis</subject><subject>Preoperative Period</subject><subject>Risk Assessment - methods</subject><subject>Risk Assessment - statistics & numerical data</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><subject>Sex Factors</subject><subject>Thyroid Diseases - diagnosis</subject><subject>Thyroid Neoplasms - diagnosis</subject><issn>1949-2553</issn><issn>1949-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUUtPxCAQJkajRvfuyXD0sgq00HIxMcZXYuJFz0jpdBfTQgWq2X8vq-trLjMZ5nuED6EjSk5pLQp25p3xSYcFpNNSSLqF9qks5ZxxXmz_mffQLMYXkouXVc3kLtpjGc4LUe-j5wvs4B0bP4xT0sl6p3s8-BZ63PmAl9OgHU7LVfC2xUY7AwGDW66HmPeAxwB-hJChb4BbqxfOx2QNhq6zRpvVIdrpdB9htukH6On66vHydn7_cHN3eXE_N4UUaS4qwRkQyQlrGlk2UhPa1k1bS0qFyW4152X23AgOhQTSsUrLuhMNoTWhjBYH6PyLd5yaAVoDLgXdqzHYQYeV8tqq_y_OLtXCv6n8dZxULBOcbAiCf50gJjXYaKDvtQM_RUWrrFJKIkk-JV-nJvgYA3Q_MpSoz2zUbzZrgbW947_2fgDfSRQfnKqOrw</recordid><startdate>20150929</startdate><enddate>20150929</enddate><creator>Li, Tuo</creator><creator>Sheng, Jianguo</creator><creator>Li, Weiqin</creator><creator>Zhang, Xin</creator><creator>Yu, Hongyu</creator><creator>Chen, Xueyun</creator><creator>Zhang, Jianquan</creator><creator>Cai, Quancai</creator><creator>Shi, Yongquan</creator><creator>Liu, Zhimin</creator><general>Impact Journals LLC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150929</creationdate><title>A new computational model for human thyroid cancer enhances the preoperative diagnostic efficacy</title><author>Li, Tuo ; Sheng, Jianguo ; Li, Weiqin ; Zhang, Xin ; Yu, Hongyu ; Chen, Xueyun ; Zhang, Jianquan ; Cai, Quancai ; Shi, Yongquan ; Liu, Zhimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-67652e09502bb94b9a01d8bd89116c325a554253b65e39e0f27a98f6b01801213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Clinical Research Paper</topic><topic>Cohort Studies</topic><topic>Computational Biology - methods</topic><topic>Diagnosis, Differential</topic><topic>Female</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Multivariate Analysis</topic><topic>Preoperative Period</topic><topic>Risk Assessment - methods</topic><topic>Risk Assessment - statistics & numerical data</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><topic>Sex Factors</topic><topic>Thyroid Diseases - diagnosis</topic><topic>Thyroid Neoplasms - diagnosis</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Tuo</creatorcontrib><creatorcontrib>Sheng, Jianguo</creatorcontrib><creatorcontrib>Li, Weiqin</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Yu, Hongyu</creatorcontrib><creatorcontrib>Chen, Xueyun</creatorcontrib><creatorcontrib>Zhang, Jianquan</creatorcontrib><creatorcontrib>Cai, Quancai</creatorcontrib><creatorcontrib>Shi, Yongquan</creatorcontrib><creatorcontrib>Liu, Zhimin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncotarget</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tuo</au><au>Sheng, Jianguo</au><au>Li, Weiqin</au><au>Zhang, Xin</au><au>Yu, Hongyu</au><au>Chen, Xueyun</au><au>Zhang, Jianquan</au><au>Cai, Quancai</au><au>Shi, Yongquan</au><au>Liu, Zhimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new computational model for human thyroid cancer enhances the preoperative diagnostic efficacy</atitle><jtitle>Oncotarget</jtitle><addtitle>Oncotarget</addtitle><date>2015-09-29</date><risdate>2015</risdate><volume>6</volume><issue>29</issue><spage>28463</spage><epage>28477</epage><pages>28463-28477</pages><issn>1949-2553</issn><eissn>1949-2553</eissn><abstract>Considering the high rate of missed diagnosis and delayed treatments for thyroid cancer, an effective systematic model for the differential diagnosis is highly needed. Thus we analyzed the data on the clinicopathological characteristics, routine laboratory tests and imaging examinations in a cohort of 13,980 patients with thyroid cancer to establish a new diagnostic model for differentiating thyroid cancer in clinical practice. Here, we randomly selected two-thirds of the population to develop the thyroid malignancy risk scoring system (TMRS) for preoperative differentiation between thyroid cancer and benignant thyroid diseases, and then validated its differential diagnostic power in the rest one-third population. The 18 predictors finally enrolled in the TMRS included male gender, clinical manifestations (fever, neck sore, neck lump, palpitations or sweating), laboratory findings (TSH>1.56mIU/L, FT3>5.85pmol/L, TPOAb>14.97IU/ml, TgAb>48.00IU/ml, Tg>34.59μg/L, Ct>64.00ng/L, and CEA>0.41μg/L), and ultrasound features (tumor number≤ 23mm, site, size, echo texture, margins, and shape of neck lymphnodes). The TMRS is validated to be well-calibrated (P = 0.437) and excellently discriminated (AUC = 0.93, 95% CI [0.92, 0.94]), with an accuracy of 83.2%, a sensitivity of 89.3%, a specificity of 81.5%, positive and negative predictive values of 56.8% and 96.6%, positive and negative likelihood ratios of 4.83 and 0.13 in the development cohort, respectively. The TMRS highlights that this differential diagnostic system could help provide accurate preoperative risk stratification for thyroid cancer, and avoid unnecessary over- and under-treatment for such patients.</abstract><cop>United States</cop><pub>Impact Journals LLC</pub><pmid>26325368</pmid><doi>10.18632/oncotarget.4691</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-2553 |
ispartof | Oncotarget, 2015-09, Vol.6 (29), p.28463-28477 |
issn | 1949-2553 1949-2553 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4695072 |
source | Freely Accessible Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Adult Clinical Research Paper Cohort Studies Computational Biology - methods Diagnosis, Differential Female Humans Logistic Models Male Middle Aged Models, Biological Multivariate Analysis Preoperative Period Risk Assessment - methods Risk Assessment - statistics & numerical data Risk Factors ROC Curve Sex Factors Thyroid Diseases - diagnosis Thyroid Neoplasms - diagnosis |
title | A new computational model for human thyroid cancer enhances the preoperative diagnostic efficacy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20computational%20model%20for%20human%20thyroid%20cancer%20enhances%20the%20preoperative%20diagnostic%20efficacy&rft.jtitle=Oncotarget&rft.au=Li,%20Tuo&rft.date=2015-09-29&rft.volume=6&rft.issue=29&rft.spage=28463&rft.epage=28477&rft.pages=28463-28477&rft.issn=1949-2553&rft.eissn=1949-2553&rft_id=info:doi/10.18632/oncotarget.4691&rft_dat=%3Cproquest_pubme%3E1721349090%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721349090&rft_id=info:pmid/26325368&rfr_iscdi=true |