A new computational model for human thyroid cancer enhances the preoperative diagnostic efficacy

Considering the high rate of missed diagnosis and delayed treatments for thyroid cancer, an effective systematic model for the differential diagnosis is highly needed. Thus we analyzed the data on the clinicopathological characteristics, routine laboratory tests and imaging examinations in a cohort...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncotarget 2015-09, Vol.6 (29), p.28463-28477
Hauptverfasser: Li, Tuo, Sheng, Jianguo, Li, Weiqin, Zhang, Xin, Yu, Hongyu, Chen, Xueyun, Zhang, Jianquan, Cai, Quancai, Shi, Yongquan, Liu, Zhimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28477
container_issue 29
container_start_page 28463
container_title Oncotarget
container_volume 6
creator Li, Tuo
Sheng, Jianguo
Li, Weiqin
Zhang, Xin
Yu, Hongyu
Chen, Xueyun
Zhang, Jianquan
Cai, Quancai
Shi, Yongquan
Liu, Zhimin
description Considering the high rate of missed diagnosis and delayed treatments for thyroid cancer, an effective systematic model for the differential diagnosis is highly needed. Thus we analyzed the data on the clinicopathological characteristics, routine laboratory tests and imaging examinations in a cohort of 13,980 patients with thyroid cancer to establish a new diagnostic model for differentiating thyroid cancer in clinical practice. Here, we randomly selected two-thirds of the population to develop the thyroid malignancy risk scoring system (TMRS) for preoperative differentiation between thyroid cancer and benignant thyroid diseases, and then validated its differential diagnostic power in the rest one-third population. The 18 predictors finally enrolled in the TMRS included male gender, clinical manifestations (fever, neck sore, neck lump, palpitations or sweating), laboratory findings (TSH>1.56mIU/L, FT3>5.85pmol/L, TPOAb>14.97IU/ml, TgAb>48.00IU/ml, Tg>34.59μg/L, Ct>64.00ng/L, and CEA>0.41μg/L), and ultrasound features (tumor number≤ 23mm, site, size, echo texture, margins, and shape of neck lymphnodes). The TMRS is validated to be well-calibrated (P = 0.437) and excellently discriminated (AUC = 0.93, 95% CI [0.92, 0.94]), with an accuracy of 83.2%, a sensitivity of 89.3%, a specificity of 81.5%, positive and negative predictive values of 56.8% and 96.6%, positive and negative likelihood ratios of 4.83 and 0.13 in the development cohort, respectively. The TMRS highlights that this differential diagnostic system could help provide accurate preoperative risk stratification for thyroid cancer, and avoid unnecessary over- and under-treatment for such patients.
doi_str_mv 10.18632/oncotarget.4691
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4695072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1721349090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-67652e09502bb94b9a01d8bd89116c325a554253b65e39e0f27a98f6b01801213</originalsourceid><addsrcrecordid>eNpVUUtPxCAQJkajRvfuyXD0sgq00HIxMcZXYuJFz0jpdBfTQgWq2X8vq-trLjMZ5nuED6EjSk5pLQp25p3xSYcFpNNSSLqF9qks5ZxxXmz_mffQLMYXkouXVc3kLtpjGc4LUe-j5wvs4B0bP4xT0sl6p3s8-BZ63PmAl9OgHU7LVfC2xUY7AwGDW66HmPeAxwB-hJChb4BbqxfOx2QNhq6zRpvVIdrpdB9htukH6On66vHydn7_cHN3eXE_N4UUaS4qwRkQyQlrGlk2UhPa1k1bS0qFyW4152X23AgOhQTSsUrLuhMNoTWhjBYH6PyLd5yaAVoDLgXdqzHYQYeV8tqq_y_OLtXCv6n8dZxULBOcbAiCf50gJjXYaKDvtQM_RUWrrFJKIkk-JV-nJvgYA3Q_MpSoz2zUbzZrgbW947_2fgDfSRQfnKqOrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721349090</pqid></control><display><type>article</type><title>A new computational model for human thyroid cancer enhances the preoperative diagnostic efficacy</title><source>Freely Accessible Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Li, Tuo ; Sheng, Jianguo ; Li, Weiqin ; Zhang, Xin ; Yu, Hongyu ; Chen, Xueyun ; Zhang, Jianquan ; Cai, Quancai ; Shi, Yongquan ; Liu, Zhimin</creator><creatorcontrib>Li, Tuo ; Sheng, Jianguo ; Li, Weiqin ; Zhang, Xin ; Yu, Hongyu ; Chen, Xueyun ; Zhang, Jianquan ; Cai, Quancai ; Shi, Yongquan ; Liu, Zhimin</creatorcontrib><description>Considering the high rate of missed diagnosis and delayed treatments for thyroid cancer, an effective systematic model for the differential diagnosis is highly needed. Thus we analyzed the data on the clinicopathological characteristics, routine laboratory tests and imaging examinations in a cohort of 13,980 patients with thyroid cancer to establish a new diagnostic model for differentiating thyroid cancer in clinical practice. Here, we randomly selected two-thirds of the population to develop the thyroid malignancy risk scoring system (TMRS) for preoperative differentiation between thyroid cancer and benignant thyroid diseases, and then validated its differential diagnostic power in the rest one-third population. The 18 predictors finally enrolled in the TMRS included male gender, clinical manifestations (fever, neck sore, neck lump, palpitations or sweating), laboratory findings (TSH&gt;1.56mIU/L, FT3&gt;5.85pmol/L, TPOAb&gt;14.97IU/ml, TgAb&gt;48.00IU/ml, Tg&gt;34.59μg/L, Ct&gt;64.00ng/L, and CEA&gt;0.41μg/L), and ultrasound features (tumor number≤ 23mm, site, size, echo texture, margins, and shape of neck lymphnodes). The TMRS is validated to be well-calibrated (P = 0.437) and excellently discriminated (AUC = 0.93, 95% CI [0.92, 0.94]), with an accuracy of 83.2%, a sensitivity of 89.3%, a specificity of 81.5%, positive and negative predictive values of 56.8% and 96.6%, positive and negative likelihood ratios of 4.83 and 0.13 in the development cohort, respectively. The TMRS highlights that this differential diagnostic system could help provide accurate preoperative risk stratification for thyroid cancer, and avoid unnecessary over- and under-treatment for such patients.</description><identifier>ISSN: 1949-2553</identifier><identifier>EISSN: 1949-2553</identifier><identifier>DOI: 10.18632/oncotarget.4691</identifier><identifier>PMID: 26325368</identifier><language>eng</language><publisher>United States: Impact Journals LLC</publisher><subject>Adult ; Clinical Research Paper ; Cohort Studies ; Computational Biology - methods ; Diagnosis, Differential ; Female ; Humans ; Logistic Models ; Male ; Middle Aged ; Models, Biological ; Multivariate Analysis ; Preoperative Period ; Risk Assessment - methods ; Risk Assessment - statistics &amp; numerical data ; Risk Factors ; ROC Curve ; Sex Factors ; Thyroid Diseases - diagnosis ; Thyroid Neoplasms - diagnosis</subject><ispartof>Oncotarget, 2015-09, Vol.6 (29), p.28463-28477</ispartof><rights>Copyright: © 2015 Li et al. 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-67652e09502bb94b9a01d8bd89116c325a554253b65e39e0f27a98f6b01801213</citedby><cites>FETCH-LOGICAL-c396t-67652e09502bb94b9a01d8bd89116c325a554253b65e39e0f27a98f6b01801213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695072/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695072/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26325368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tuo</creatorcontrib><creatorcontrib>Sheng, Jianguo</creatorcontrib><creatorcontrib>Li, Weiqin</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Yu, Hongyu</creatorcontrib><creatorcontrib>Chen, Xueyun</creatorcontrib><creatorcontrib>Zhang, Jianquan</creatorcontrib><creatorcontrib>Cai, Quancai</creatorcontrib><creatorcontrib>Shi, Yongquan</creatorcontrib><creatorcontrib>Liu, Zhimin</creatorcontrib><title>A new computational model for human thyroid cancer enhances the preoperative diagnostic efficacy</title><title>Oncotarget</title><addtitle>Oncotarget</addtitle><description>Considering the high rate of missed diagnosis and delayed treatments for thyroid cancer, an effective systematic model for the differential diagnosis is highly needed. Thus we analyzed the data on the clinicopathological characteristics, routine laboratory tests and imaging examinations in a cohort of 13,980 patients with thyroid cancer to establish a new diagnostic model for differentiating thyroid cancer in clinical practice. Here, we randomly selected two-thirds of the population to develop the thyroid malignancy risk scoring system (TMRS) for preoperative differentiation between thyroid cancer and benignant thyroid diseases, and then validated its differential diagnostic power in the rest one-third population. The 18 predictors finally enrolled in the TMRS included male gender, clinical manifestations (fever, neck sore, neck lump, palpitations or sweating), laboratory findings (TSH&gt;1.56mIU/L, FT3&gt;5.85pmol/L, TPOAb&gt;14.97IU/ml, TgAb&gt;48.00IU/ml, Tg&gt;34.59μg/L, Ct&gt;64.00ng/L, and CEA&gt;0.41μg/L), and ultrasound features (tumor number≤ 23mm, site, size, echo texture, margins, and shape of neck lymphnodes). The TMRS is validated to be well-calibrated (P = 0.437) and excellently discriminated (AUC = 0.93, 95% CI [0.92, 0.94]), with an accuracy of 83.2%, a sensitivity of 89.3%, a specificity of 81.5%, positive and negative predictive values of 56.8% and 96.6%, positive and negative likelihood ratios of 4.83 and 0.13 in the development cohort, respectively. The TMRS highlights that this differential diagnostic system could help provide accurate preoperative risk stratification for thyroid cancer, and avoid unnecessary over- and under-treatment for such patients.</description><subject>Adult</subject><subject>Clinical Research Paper</subject><subject>Cohort Studies</subject><subject>Computational Biology - methods</subject><subject>Diagnosis, Differential</subject><subject>Female</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Multivariate Analysis</subject><subject>Preoperative Period</subject><subject>Risk Assessment - methods</subject><subject>Risk Assessment - statistics &amp; numerical data</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><subject>Sex Factors</subject><subject>Thyroid Diseases - diagnosis</subject><subject>Thyroid Neoplasms - diagnosis</subject><issn>1949-2553</issn><issn>1949-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUUtPxCAQJkajRvfuyXD0sgq00HIxMcZXYuJFz0jpdBfTQgWq2X8vq-trLjMZ5nuED6EjSk5pLQp25p3xSYcFpNNSSLqF9qks5ZxxXmz_mffQLMYXkouXVc3kLtpjGc4LUe-j5wvs4B0bP4xT0sl6p3s8-BZ63PmAl9OgHU7LVfC2xUY7AwGDW66HmPeAxwB-hJChb4BbqxfOx2QNhq6zRpvVIdrpdB9htukH6On66vHydn7_cHN3eXE_N4UUaS4qwRkQyQlrGlk2UhPa1k1bS0qFyW4152X23AgOhQTSsUrLuhMNoTWhjBYH6PyLd5yaAVoDLgXdqzHYQYeV8tqq_y_OLtXCv6n8dZxULBOcbAiCf50gJjXYaKDvtQM_RUWrrFJKIkk-JV-nJvgYA3Q_MpSoz2zUbzZrgbW947_2fgDfSRQfnKqOrw</recordid><startdate>20150929</startdate><enddate>20150929</enddate><creator>Li, Tuo</creator><creator>Sheng, Jianguo</creator><creator>Li, Weiqin</creator><creator>Zhang, Xin</creator><creator>Yu, Hongyu</creator><creator>Chen, Xueyun</creator><creator>Zhang, Jianquan</creator><creator>Cai, Quancai</creator><creator>Shi, Yongquan</creator><creator>Liu, Zhimin</creator><general>Impact Journals LLC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150929</creationdate><title>A new computational model for human thyroid cancer enhances the preoperative diagnostic efficacy</title><author>Li, Tuo ; Sheng, Jianguo ; Li, Weiqin ; Zhang, Xin ; Yu, Hongyu ; Chen, Xueyun ; Zhang, Jianquan ; Cai, Quancai ; Shi, Yongquan ; Liu, Zhimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-67652e09502bb94b9a01d8bd89116c325a554253b65e39e0f27a98f6b01801213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Clinical Research Paper</topic><topic>Cohort Studies</topic><topic>Computational Biology - methods</topic><topic>Diagnosis, Differential</topic><topic>Female</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Multivariate Analysis</topic><topic>Preoperative Period</topic><topic>Risk Assessment - methods</topic><topic>Risk Assessment - statistics &amp; numerical data</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><topic>Sex Factors</topic><topic>Thyroid Diseases - diagnosis</topic><topic>Thyroid Neoplasms - diagnosis</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Tuo</creatorcontrib><creatorcontrib>Sheng, Jianguo</creatorcontrib><creatorcontrib>Li, Weiqin</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Yu, Hongyu</creatorcontrib><creatorcontrib>Chen, Xueyun</creatorcontrib><creatorcontrib>Zhang, Jianquan</creatorcontrib><creatorcontrib>Cai, Quancai</creatorcontrib><creatorcontrib>Shi, Yongquan</creatorcontrib><creatorcontrib>Liu, Zhimin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncotarget</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tuo</au><au>Sheng, Jianguo</au><au>Li, Weiqin</au><au>Zhang, Xin</au><au>Yu, Hongyu</au><au>Chen, Xueyun</au><au>Zhang, Jianquan</au><au>Cai, Quancai</au><au>Shi, Yongquan</au><au>Liu, Zhimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new computational model for human thyroid cancer enhances the preoperative diagnostic efficacy</atitle><jtitle>Oncotarget</jtitle><addtitle>Oncotarget</addtitle><date>2015-09-29</date><risdate>2015</risdate><volume>6</volume><issue>29</issue><spage>28463</spage><epage>28477</epage><pages>28463-28477</pages><issn>1949-2553</issn><eissn>1949-2553</eissn><abstract>Considering the high rate of missed diagnosis and delayed treatments for thyroid cancer, an effective systematic model for the differential diagnosis is highly needed. Thus we analyzed the data on the clinicopathological characteristics, routine laboratory tests and imaging examinations in a cohort of 13,980 patients with thyroid cancer to establish a new diagnostic model for differentiating thyroid cancer in clinical practice. Here, we randomly selected two-thirds of the population to develop the thyroid malignancy risk scoring system (TMRS) for preoperative differentiation between thyroid cancer and benignant thyroid diseases, and then validated its differential diagnostic power in the rest one-third population. The 18 predictors finally enrolled in the TMRS included male gender, clinical manifestations (fever, neck sore, neck lump, palpitations or sweating), laboratory findings (TSH&gt;1.56mIU/L, FT3&gt;5.85pmol/L, TPOAb&gt;14.97IU/ml, TgAb&gt;48.00IU/ml, Tg&gt;34.59μg/L, Ct&gt;64.00ng/L, and CEA&gt;0.41μg/L), and ultrasound features (tumor number≤ 23mm, site, size, echo texture, margins, and shape of neck lymphnodes). The TMRS is validated to be well-calibrated (P = 0.437) and excellently discriminated (AUC = 0.93, 95% CI [0.92, 0.94]), with an accuracy of 83.2%, a sensitivity of 89.3%, a specificity of 81.5%, positive and negative predictive values of 56.8% and 96.6%, positive and negative likelihood ratios of 4.83 and 0.13 in the development cohort, respectively. The TMRS highlights that this differential diagnostic system could help provide accurate preoperative risk stratification for thyroid cancer, and avoid unnecessary over- and under-treatment for such patients.</abstract><cop>United States</cop><pub>Impact Journals LLC</pub><pmid>26325368</pmid><doi>10.18632/oncotarget.4691</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-2553
ispartof Oncotarget, 2015-09, Vol.6 (29), p.28463-28477
issn 1949-2553
1949-2553
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4695072
source Freely Accessible Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Adult
Clinical Research Paper
Cohort Studies
Computational Biology - methods
Diagnosis, Differential
Female
Humans
Logistic Models
Male
Middle Aged
Models, Biological
Multivariate Analysis
Preoperative Period
Risk Assessment - methods
Risk Assessment - statistics & numerical data
Risk Factors
ROC Curve
Sex Factors
Thyroid Diseases - diagnosis
Thyroid Neoplasms - diagnosis
title A new computational model for human thyroid cancer enhances the preoperative diagnostic efficacy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20computational%20model%20for%20human%20thyroid%20cancer%20enhances%20the%20preoperative%20diagnostic%20efficacy&rft.jtitle=Oncotarget&rft.au=Li,%20Tuo&rft.date=2015-09-29&rft.volume=6&rft.issue=29&rft.spage=28463&rft.epage=28477&rft.pages=28463-28477&rft.issn=1949-2553&rft.eissn=1949-2553&rft_id=info:doi/10.18632/oncotarget.4691&rft_dat=%3Cproquest_pubme%3E1721349090%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721349090&rft_id=info:pmid/26325368&rfr_iscdi=true