MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity

Homeostatic synaptic plasticity is a compensatory response to alterations in neuronal activity. Chronic deprivation of neuronal activity results in an increase in synaptic AMPA receptors (AMPARs) and postsynaptic currents. The biogenesis of GluA2-lacking, calcium-permeable AMPARs (CP-AMPARs) plays a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-12, Vol.6 (1), p.10045-10045, Article 10045
Hauptverfasser: Hou, Qingming, Ruan, Hongyu, Gilbert, James, Wang, Guan, Ma, Qi, Yao, Wei-Dong, Man, Heng-Ye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10045
container_issue 1
container_start_page 10045
container_title Nature communications
container_volume 6
creator Hou, Qingming
Ruan, Hongyu
Gilbert, James
Wang, Guan
Ma, Qi
Yao, Wei-Dong
Man, Heng-Ye
description Homeostatic synaptic plasticity is a compensatory response to alterations in neuronal activity. Chronic deprivation of neuronal activity results in an increase in synaptic AMPA receptors (AMPARs) and postsynaptic currents. The biogenesis of GluA2-lacking, calcium-permeable AMPARs (CP-AMPARs) plays a crucial role in the homeostatic response; however, the mechanisms leading to CP-AMPAR formation remain unclear. Here we show that the microRNA, miR124, is required for the generation of CP-AMPARs and homeostatic plasticity. miR124 suppresses GluA2 expression via targeting its 3′-UTR, leading to the formation of CP-AMPARs. Blockade of miR124 function abolishes the homeostatic response, whereas miR124 overexpression leads to earlier induction of homeostatic plasticity. miR124 transcription is controlled by an inhibitory transcription factor EVI1, acting by association with the deacetylase HDAC1. Our data support a cellular cascade in which inactivity relieves EVI1/HDAC-mediated inhibition of miR124 gene transcription, resulting in enhanced miR124 expression, formation of CP-AMPARs and subsequent induction of homeostatic synaptic plasticity. GluA2-lacking AMPA receptors are known to play a role in homeostatic plasticity. Here, the authors show that spiking activity blockade disinhibits mir124 transcription, which in turn suppresses GluA2 mRNA translation, thereby contributing to synaptic upscaling in hippocampal cells.
doi_str_mv 10.1038/ncomms10045
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4686673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1738814416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-5d8c9dd5053bf693c4e8434d739a9bd63129c280fc70583f91744cfa512ba10c3</originalsourceid><addsrcrecordid>eNptkctLxDAQxoMoKuuevEvAi6DVpEma9CIs4gt8oOg5pGnqRtqmJq24_71Zd5VVnMsMzI9vHh8AuxgdY0TESatd0wSMEGVrYDtFFCeYp2R9pd4C4xBeUQySY0HpJthKsyxFnNNt8HBrtXePdxPY2EecUmgD9OZtsN6UsHIe9lMDzUfnTQjWtdBVcOoa40KveqthmLWqmxddrULMtp_tgI1K1cGMl3kEni_On86ukpv7y-uzyU2iGaN9wkqh87JkiJGiynKiqRGU0JKTXOVFmRGc5joVqNIcMUGqHHNKdaUYTguFkSYjcLrQ7YaiMaU2be9VLTtvG-Vn0ikrf3daO5Uv7l3STGQZJ1HgYCng3dtgQi8bG7Spa9UaNwSJORECU4qziO7_QV_d4Nt43hcVP8s4jdThgoofDcGb6mcZjOTcLbniVqT3Vvf_Yb-9icDRAgix1b4YvzL0H71PMh6f1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738003574</pqid></control><display><type>article</type><title>MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Nature Free</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Hou, Qingming ; Ruan, Hongyu ; Gilbert, James ; Wang, Guan ; Ma, Qi ; Yao, Wei-Dong ; Man, Heng-Ye</creator><creatorcontrib>Hou, Qingming ; Ruan, Hongyu ; Gilbert, James ; Wang, Guan ; Ma, Qi ; Yao, Wei-Dong ; Man, Heng-Ye</creatorcontrib><description>Homeostatic synaptic plasticity is a compensatory response to alterations in neuronal activity. Chronic deprivation of neuronal activity results in an increase in synaptic AMPA receptors (AMPARs) and postsynaptic currents. The biogenesis of GluA2-lacking, calcium-permeable AMPARs (CP-AMPARs) plays a crucial role in the homeostatic response; however, the mechanisms leading to CP-AMPAR formation remain unclear. Here we show that the microRNA, miR124, is required for the generation of CP-AMPARs and homeostatic plasticity. miR124 suppresses GluA2 expression via targeting its 3′-UTR, leading to the formation of CP-AMPARs. Blockade of miR124 function abolishes the homeostatic response, whereas miR124 overexpression leads to earlier induction of homeostatic plasticity. miR124 transcription is controlled by an inhibitory transcription factor EVI1, acting by association with the deacetylase HDAC1. Our data support a cellular cascade in which inactivity relieves EVI1/HDAC-mediated inhibition of miR124 gene transcription, resulting in enhanced miR124 expression, formation of CP-AMPARs and subsequent induction of homeostatic synaptic plasticity. GluA2-lacking AMPA receptors are known to play a role in homeostatic plasticity. Here, the authors show that spiking activity blockade disinhibits mir124 transcription, which in turn suppresses GluA2 mRNA translation, thereby contributing to synaptic upscaling in hippocampal cells.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms10045</identifier><identifier>PMID: 26620774</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/109 ; 13/89 ; 631/337/384/331 ; 631/378/2591 ; 631/80/86 ; 82 ; 82/51 ; 9/74 ; Animals ; Hippocampus - cytology ; Hippocampus - metabolism ; Homeostasis ; Humanities and Social Sciences ; Humans ; MicroRNAs - genetics ; MicroRNAs - metabolism ; multidisciplinary ; Neuronal Plasticity ; Neurons - metabolism ; Rats, Sprague-Dawley ; Receptors, AMPA - genetics ; Receptors, AMPA - metabolism ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-12, Vol.6 (1), p.10045-10045, Article 10045</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Dec 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-5d8c9dd5053bf693c4e8434d739a9bd63129c280fc70583f91744cfa512ba10c3</citedby><cites>FETCH-LOGICAL-c554t-5d8c9dd5053bf693c4e8434d739a9bd63129c280fc70583f91744cfa512ba10c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686673/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686673/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26620774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Qingming</creatorcontrib><creatorcontrib>Ruan, Hongyu</creatorcontrib><creatorcontrib>Gilbert, James</creatorcontrib><creatorcontrib>Wang, Guan</creatorcontrib><creatorcontrib>Ma, Qi</creatorcontrib><creatorcontrib>Yao, Wei-Dong</creatorcontrib><creatorcontrib>Man, Heng-Ye</creatorcontrib><title>MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Homeostatic synaptic plasticity is a compensatory response to alterations in neuronal activity. Chronic deprivation of neuronal activity results in an increase in synaptic AMPA receptors (AMPARs) and postsynaptic currents. The biogenesis of GluA2-lacking, calcium-permeable AMPARs (CP-AMPARs) plays a crucial role in the homeostatic response; however, the mechanisms leading to CP-AMPAR formation remain unclear. Here we show that the microRNA, miR124, is required for the generation of CP-AMPARs and homeostatic plasticity. miR124 suppresses GluA2 expression via targeting its 3′-UTR, leading to the formation of CP-AMPARs. Blockade of miR124 function abolishes the homeostatic response, whereas miR124 overexpression leads to earlier induction of homeostatic plasticity. miR124 transcription is controlled by an inhibitory transcription factor EVI1, acting by association with the deacetylase HDAC1. Our data support a cellular cascade in which inactivity relieves EVI1/HDAC-mediated inhibition of miR124 gene transcription, resulting in enhanced miR124 expression, formation of CP-AMPARs and subsequent induction of homeostatic synaptic plasticity. GluA2-lacking AMPA receptors are known to play a role in homeostatic plasticity. Here, the authors show that spiking activity blockade disinhibits mir124 transcription, which in turn suppresses GluA2 mRNA translation, thereby contributing to synaptic upscaling in hippocampal cells.</description><subject>13</subject><subject>13/109</subject><subject>13/89</subject><subject>631/337/384/331</subject><subject>631/378/2591</subject><subject>631/80/86</subject><subject>82</subject><subject>82/51</subject><subject>9/74</subject><subject>Animals</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - metabolism</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>multidisciplinary</subject><subject>Neuronal Plasticity</subject><subject>Neurons - metabolism</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, AMPA - genetics</subject><subject>Receptors, AMPA - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkctLxDAQxoMoKuuevEvAi6DVpEma9CIs4gt8oOg5pGnqRtqmJq24_71Zd5VVnMsMzI9vHh8AuxgdY0TESatd0wSMEGVrYDtFFCeYp2R9pd4C4xBeUQySY0HpJthKsyxFnNNt8HBrtXePdxPY2EecUmgD9OZtsN6UsHIe9lMDzUfnTQjWtdBVcOoa40KveqthmLWqmxddrULMtp_tgI1K1cGMl3kEni_On86ukpv7y-uzyU2iGaN9wkqh87JkiJGiynKiqRGU0JKTXOVFmRGc5joVqNIcMUGqHHNKdaUYTguFkSYjcLrQ7YaiMaU2be9VLTtvG-Vn0ikrf3daO5Uv7l3STGQZJ1HgYCng3dtgQi8bG7Spa9UaNwSJORECU4qziO7_QV_d4Nt43hcVP8s4jdThgoofDcGb6mcZjOTcLbniVqT3Vvf_Yb-9icDRAgix1b4YvzL0H71PMh6f1Q</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Hou, Qingming</creator><creator>Ruan, Hongyu</creator><creator>Gilbert, James</creator><creator>Wang, Guan</creator><creator>Ma, Qi</creator><creator>Yao, Wei-Dong</creator><creator>Man, Heng-Ye</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151201</creationdate><title>MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity</title><author>Hou, Qingming ; Ruan, Hongyu ; Gilbert, James ; Wang, Guan ; Ma, Qi ; Yao, Wei-Dong ; Man, Heng-Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-5d8c9dd5053bf693c4e8434d739a9bd63129c280fc70583f91744cfa512ba10c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13</topic><topic>13/109</topic><topic>13/89</topic><topic>631/337/384/331</topic><topic>631/378/2591</topic><topic>631/80/86</topic><topic>82</topic><topic>82/51</topic><topic>9/74</topic><topic>Animals</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - metabolism</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>multidisciplinary</topic><topic>Neuronal Plasticity</topic><topic>Neurons - metabolism</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, AMPA - genetics</topic><topic>Receptors, AMPA - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Qingming</creatorcontrib><creatorcontrib>Ruan, Hongyu</creatorcontrib><creatorcontrib>Gilbert, James</creatorcontrib><creatorcontrib>Wang, Guan</creatorcontrib><creatorcontrib>Ma, Qi</creatorcontrib><creatorcontrib>Yao, Wei-Dong</creatorcontrib><creatorcontrib>Man, Heng-Ye</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Qingming</au><au>Ruan, Hongyu</au><au>Gilbert, James</au><au>Wang, Guan</au><au>Ma, Qi</au><au>Yao, Wei-Dong</au><au>Man, Heng-Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>10045</spage><epage>10045</epage><pages>10045-10045</pages><artnum>10045</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Homeostatic synaptic plasticity is a compensatory response to alterations in neuronal activity. Chronic deprivation of neuronal activity results in an increase in synaptic AMPA receptors (AMPARs) and postsynaptic currents. The biogenesis of GluA2-lacking, calcium-permeable AMPARs (CP-AMPARs) plays a crucial role in the homeostatic response; however, the mechanisms leading to CP-AMPAR formation remain unclear. Here we show that the microRNA, miR124, is required for the generation of CP-AMPARs and homeostatic plasticity. miR124 suppresses GluA2 expression via targeting its 3′-UTR, leading to the formation of CP-AMPARs. Blockade of miR124 function abolishes the homeostatic response, whereas miR124 overexpression leads to earlier induction of homeostatic plasticity. miR124 transcription is controlled by an inhibitory transcription factor EVI1, acting by association with the deacetylase HDAC1. Our data support a cellular cascade in which inactivity relieves EVI1/HDAC-mediated inhibition of miR124 gene transcription, resulting in enhanced miR124 expression, formation of CP-AMPARs and subsequent induction of homeostatic synaptic plasticity. GluA2-lacking AMPA receptors are known to play a role in homeostatic plasticity. Here, the authors show that spiking activity blockade disinhibits mir124 transcription, which in turn suppresses GluA2 mRNA translation, thereby contributing to synaptic upscaling in hippocampal cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26620774</pmid><doi>10.1038/ncomms10045</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-12, Vol.6 (1), p.10045-10045, Article 10045
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4686673
source PubMed (Medline); MEDLINE; Nature Free; Free E-Journal (出版社公開部分のみ); Directory of Open Access Journals; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects 13
13/109
13/89
631/337/384/331
631/378/2591
631/80/86
82
82/51
9/74
Animals
Hippocampus - cytology
Hippocampus - metabolism
Homeostasis
Humanities and Social Sciences
Humans
MicroRNAs - genetics
MicroRNAs - metabolism
multidisciplinary
Neuronal Plasticity
Neurons - metabolism
Rats, Sprague-Dawley
Receptors, AMPA - genetics
Receptors, AMPA - metabolism
Science
Science (multidisciplinary)
title MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA%20miR124%20is%20required%20for%20the%20expression%20of%20homeostatic%20synaptic%20plasticity&rft.jtitle=Nature%20communications&rft.au=Hou,%20Qingming&rft.date=2015-12-01&rft.volume=6&rft.issue=1&rft.spage=10045&rft.epage=10045&rft.pages=10045-10045&rft.artnum=10045&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms10045&rft_dat=%3Cproquest_pubme%3E1738814416%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738003574&rft_id=info:pmid/26620774&rfr_iscdi=true