Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures

Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-12, Vol.5 (1), p.18452-18452, Article 18452
Hauptverfasser: Bingi, Jayachandra, Murukeshan, Vadakke Matham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18452
container_issue 1
container_start_page 18452
container_title Scientific reports
container_volume 5
creator Bingi, Jayachandra
Murukeshan, Vadakke Matham
description Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.
doi_str_mv 10.1038/srep18452
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4683453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4099074621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-f5749dd04656b56244719bf6877d74d341d57ffadc6ff823a5a19c1e53e71b613</originalsourceid><addsrcrecordid>eNplkUtLxDAUhYMoKurCPyABNypWm3e7EcQ3CC7UdUjTZCbaSWrSCv57I6PDqNnckPNxci4HgF1UnqCSVKcpmh5VlOEVsIlLygpMMF5dum-AnZReynwYrimq18EG5lzUDJFNYB57o187Azs3TMMkqn76AW2I0KomOq0G5yfwRo0pOeWP4duokiui8m2YQXwJ0xBHPYzRJJjfYNMp_QqT65wOfkncBmtWdcnsfM8t8Hx99XRxW9w_3NxdnN8XmpV0KCwTtG7bknLGG8YxpQLVjeWVEK2gLaGoZcJa1WpubYWJYgrVGhlGjEANR2QLnM19-7GZmVYbP0TVyT66mYofMignfyveTeUkvEvKK0IZyQYH3wYxvI0mDXLmkjZdp7wJY5JI5KAUCSwyuv8HfQlj9Hm9TNU1xoghlqnDOaVjSLkquwiDSvnVn1z0l9m95fQL8qetDBzNgZQlPzFx6ct_bp_umKWt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799221515</pqid></control><display><type>article</type><title>Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bingi, Jayachandra ; Murukeshan, Vadakke Matham</creator><creatorcontrib>Bingi, Jayachandra ; Murukeshan, Vadakke Matham</creatorcontrib><description>Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep18452</identifier><identifier>PMID: 26679513</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624 ; 639/766 ; Fabrication ; Fourier transforms ; Humanities and Social Sciences ; Lithography ; multidisciplinary ; Photolithography ; Science ; Silicon ; Solar cells</subject><ispartof>Scientific reports, 2015-12, Vol.5 (1), p.18452-18452, Article 18452</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Dec 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-f5749dd04656b56244719bf6877d74d341d57ffadc6ff823a5a19c1e53e71b613</citedby><cites>FETCH-LOGICAL-c504t-f5749dd04656b56244719bf6877d74d341d57ffadc6ff823a5a19c1e53e71b613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683453/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683453/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26679513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bingi, Jayachandra</creatorcontrib><creatorcontrib>Murukeshan, Vadakke Matham</creatorcontrib><title>Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.</description><subject>639/624</subject><subject>639/766</subject><subject>Fabrication</subject><subject>Fourier transforms</subject><subject>Humanities and Social Sciences</subject><subject>Lithography</subject><subject>multidisciplinary</subject><subject>Photolithography</subject><subject>Science</subject><subject>Silicon</subject><subject>Solar cells</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkUtLxDAUhYMoKurCPyABNypWm3e7EcQ3CC7UdUjTZCbaSWrSCv57I6PDqNnckPNxci4HgF1UnqCSVKcpmh5VlOEVsIlLygpMMF5dum-AnZReynwYrimq18EG5lzUDJFNYB57o187Azs3TMMkqn76AW2I0KomOq0G5yfwRo0pOeWP4duokiui8m2YQXwJ0xBHPYzRJJjfYNMp_QqT65wOfkncBmtWdcnsfM8t8Hx99XRxW9w_3NxdnN8XmpV0KCwTtG7bknLGG8YxpQLVjeWVEK2gLaGoZcJa1WpubYWJYgrVGhlGjEANR2QLnM19-7GZmVYbP0TVyT66mYofMignfyveTeUkvEvKK0IZyQYH3wYxvI0mDXLmkjZdp7wJY5JI5KAUCSwyuv8HfQlj9Hm9TNU1xoghlqnDOaVjSLkquwiDSvnVn1z0l9m95fQL8qetDBzNgZQlPzFx6ct_bp_umKWt</recordid><startdate>20151218</startdate><enddate>20151218</enddate><creator>Bingi, Jayachandra</creator><creator>Murukeshan, Vadakke Matham</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151218</creationdate><title>Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures</title><author>Bingi, Jayachandra ; Murukeshan, Vadakke Matham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-f5749dd04656b56244719bf6877d74d341d57ffadc6ff823a5a19c1e53e71b613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/624</topic><topic>639/766</topic><topic>Fabrication</topic><topic>Fourier transforms</topic><topic>Humanities and Social Sciences</topic><topic>Lithography</topic><topic>multidisciplinary</topic><topic>Photolithography</topic><topic>Science</topic><topic>Silicon</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bingi, Jayachandra</creatorcontrib><creatorcontrib>Murukeshan, Vadakke Matham</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bingi, Jayachandra</au><au>Murukeshan, Vadakke Matham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-12-18</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>18452</spage><epage>18452</epage><pages>18452-18452</pages><artnum>18452</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26679513</pmid><doi>10.1038/srep18452</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-12, Vol.5 (1), p.18452-18452, Article 18452
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4683453
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 639/624
639/766
Fabrication
Fourier transforms
Humanities and Social Sciences
Lithography
multidisciplinary
Photolithography
Science
Silicon
Solar cells
title Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speckle%20lithography%20for%20fabricating%20Gaussian,%20quasi-random%202D%20structures%20and%20black%20silicon%20structures&rft.jtitle=Scientific%20reports&rft.au=Bingi,%20Jayachandra&rft.date=2015-12-18&rft.volume=5&rft.issue=1&rft.spage=18452&rft.epage=18452&rft.pages=18452-18452&rft.artnum=18452&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep18452&rft_dat=%3Cproquest_pubme%3E4099074621%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799221515&rft_id=info:pmid/26679513&rfr_iscdi=true