Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures
Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structu...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-12, Vol.5 (1), p.18452-18452, Article 18452 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18452 |
---|---|
container_issue | 1 |
container_start_page | 18452 |
container_title | Scientific reports |
container_volume | 5 |
creator | Bingi, Jayachandra Murukeshan, Vadakke Matham |
description | Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. |
doi_str_mv | 10.1038/srep18452 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4683453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4099074621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-f5749dd04656b56244719bf6877d74d341d57ffadc6ff823a5a19c1e53e71b613</originalsourceid><addsrcrecordid>eNplkUtLxDAUhYMoKurCPyABNypWm3e7EcQ3CC7UdUjTZCbaSWrSCv57I6PDqNnckPNxci4HgF1UnqCSVKcpmh5VlOEVsIlLygpMMF5dum-AnZReynwYrimq18EG5lzUDJFNYB57o187Azs3TMMkqn76AW2I0KomOq0G5yfwRo0pOeWP4duokiui8m2YQXwJ0xBHPYzRJJjfYNMp_QqT65wOfkncBmtWdcnsfM8t8Hx99XRxW9w_3NxdnN8XmpV0KCwTtG7bknLGG8YxpQLVjeWVEK2gLaGoZcJa1WpubYWJYgrVGhlGjEANR2QLnM19-7GZmVYbP0TVyT66mYofMignfyveTeUkvEvKK0IZyQYH3wYxvI0mDXLmkjZdp7wJY5JI5KAUCSwyuv8HfQlj9Hm9TNU1xoghlqnDOaVjSLkquwiDSvnVn1z0l9m95fQL8qetDBzNgZQlPzFx6ct_bp_umKWt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799221515</pqid></control><display><type>article</type><title>Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bingi, Jayachandra ; Murukeshan, Vadakke Matham</creator><creatorcontrib>Bingi, Jayachandra ; Murukeshan, Vadakke Matham</creatorcontrib><description>Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep18452</identifier><identifier>PMID: 26679513</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624 ; 639/766 ; Fabrication ; Fourier transforms ; Humanities and Social Sciences ; Lithography ; multidisciplinary ; Photolithography ; Science ; Silicon ; Solar cells</subject><ispartof>Scientific reports, 2015-12, Vol.5 (1), p.18452-18452, Article 18452</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Dec 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-f5749dd04656b56244719bf6877d74d341d57ffadc6ff823a5a19c1e53e71b613</citedby><cites>FETCH-LOGICAL-c504t-f5749dd04656b56244719bf6877d74d341d57ffadc6ff823a5a19c1e53e71b613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683453/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683453/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26679513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bingi, Jayachandra</creatorcontrib><creatorcontrib>Murukeshan, Vadakke Matham</creatorcontrib><title>Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.</description><subject>639/624</subject><subject>639/766</subject><subject>Fabrication</subject><subject>Fourier transforms</subject><subject>Humanities and Social Sciences</subject><subject>Lithography</subject><subject>multidisciplinary</subject><subject>Photolithography</subject><subject>Science</subject><subject>Silicon</subject><subject>Solar cells</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkUtLxDAUhYMoKurCPyABNypWm3e7EcQ3CC7UdUjTZCbaSWrSCv57I6PDqNnckPNxci4HgF1UnqCSVKcpmh5VlOEVsIlLygpMMF5dum-AnZReynwYrimq18EG5lzUDJFNYB57o187Azs3TMMkqn76AW2I0KomOq0G5yfwRo0pOeWP4duokiui8m2YQXwJ0xBHPYzRJJjfYNMp_QqT65wOfkncBmtWdcnsfM8t8Hx99XRxW9w_3NxdnN8XmpV0KCwTtG7bknLGG8YxpQLVjeWVEK2gLaGoZcJa1WpubYWJYgrVGhlGjEANR2QLnM19-7GZmVYbP0TVyT66mYofMignfyveTeUkvEvKK0IZyQYH3wYxvI0mDXLmkjZdp7wJY5JI5KAUCSwyuv8HfQlj9Hm9TNU1xoghlqnDOaVjSLkquwiDSvnVn1z0l9m95fQL8qetDBzNgZQlPzFx6ct_bp_umKWt</recordid><startdate>20151218</startdate><enddate>20151218</enddate><creator>Bingi, Jayachandra</creator><creator>Murukeshan, Vadakke Matham</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151218</creationdate><title>Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures</title><author>Bingi, Jayachandra ; Murukeshan, Vadakke Matham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-f5749dd04656b56244719bf6877d74d341d57ffadc6ff823a5a19c1e53e71b613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/624</topic><topic>639/766</topic><topic>Fabrication</topic><topic>Fourier transforms</topic><topic>Humanities and Social Sciences</topic><topic>Lithography</topic><topic>multidisciplinary</topic><topic>Photolithography</topic><topic>Science</topic><topic>Silicon</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bingi, Jayachandra</creatorcontrib><creatorcontrib>Murukeshan, Vadakke Matham</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bingi, Jayachandra</au><au>Murukeshan, Vadakke Matham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-12-18</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>18452</spage><epage>18452</epage><pages>18452-18452</pages><artnum>18452</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26679513</pmid><doi>10.1038/srep18452</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-12, Vol.5 (1), p.18452-18452, Article 18452 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4683453 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 639/624 639/766 Fabrication Fourier transforms Humanities and Social Sciences Lithography multidisciplinary Photolithography Science Silicon Solar cells |
title | Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speckle%20lithography%20for%20fabricating%20Gaussian,%20quasi-random%202D%20structures%20and%20black%20silicon%20structures&rft.jtitle=Scientific%20reports&rft.au=Bingi,%20Jayachandra&rft.date=2015-12-18&rft.volume=5&rft.issue=1&rft.spage=18452&rft.epage=18452&rft.pages=18452-18452&rft.artnum=18452&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep18452&rft_dat=%3Cproquest_pubme%3E4099074621%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799221515&rft_id=info:pmid/26679513&rfr_iscdi=true |