Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet

Fatty liver is associated with endoplasmic reticulum stress and activation of the hepatic unfolded protein response (UPR). Reduced hepatic expression of the UPR regulator X-box binding protein 1 spliced (XBP1s) is associated with human nonalcoholic steatohepatitis (NASH), and feeding mice a high-fat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: Gastrointestinal and liver physiology 2015-12, Vol.309 (12), p.G965-G974
Hauptverfasser: Liu, Xiaoying, Henkel, Anne S, LeCuyer, Brian E, Schipma, Matthew J, Anderson, Kristy A, Green, Richard M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page G974
container_issue 12
container_start_page G965
container_title American journal of physiology: Gastrointestinal and liver physiology
container_volume 309
creator Liu, Xiaoying
Henkel, Anne S
LeCuyer, Brian E
Schipma, Matthew J
Anderson, Kristy A
Green, Richard M
description Fatty liver is associated with endoplasmic reticulum stress and activation of the hepatic unfolded protein response (UPR). Reduced hepatic expression of the UPR regulator X-box binding protein 1 spliced (XBP1s) is associated with human nonalcoholic steatohepatitis (NASH), and feeding mice a high-fat diet with fructose/sucrose causes progressive, fibrosing steatohepatitis. This study examines the role of XBP1 in nonalcoholic fatty liver injury and fatty acid-induced cell injury. Hepatocyte-specific Xbp1-deficient (Xbp1(-/-)) mice were fed a high-fat/sugar (HFS) diet for up to 16 wk. HFS-fed Xbp1(-/-) mice exhibited higher serum alanine aminotransferase levels compared with Xbp1(fl/fl) controls. RNA sequencing and Gene Ontogeny pathway analysis of hepatic mRNA revealed that apoptotic process, inflammatory response, and extracellular matrix structural constituent pathways had enhanced activation in HFS-fed Xbp1(-/-) mice. Liver histology demonstrated enhanced injury and fibrosis but less steatosis in the HFS-fed Xbp1(-/-) mice. Hepatic Col1a1 and Tgfβ1 gene expression, as well as Chop and phosphorylated JNK (p-JNK), were increased in Xbp1(-/-) compared with Xbp1(fl/fl) mice after HFS feeding. In vitro, stable XBP1-knockdown Huh7 cells (Huh7-KD) and scramble control cells (Huh7-SCR) were generated and treated with palmitic acid (PA) for 24 h. PA-treated Huh7-KD cells had increased cytotoxicity measured by lactate dehydrogenase release, apoptotic nuclei, and caspase3/7 activity assays compared with Huh7-SCR cells. CHOP and p-JNK expression was also increased in Huh7-KD cells following PA treatment. In conclusion, loss of XBP1 enhances injury in both in vivo and in vitro models of fatty liver injury. We speculate that hepatic XBP1 plays an important protective role in pathogenesis of NASH.
doi_str_mv 10.1152/ajpgi.00132.2015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4683298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3902781861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-af8b66f2ec90ea6e6694c7fd859f5a8cf6fc1fba32392d81dc35e8ed0bd8eaf93</originalsourceid><addsrcrecordid>eNpVkc1LxDAQxYMo7rp69yQBz13z0bTpRRBRVxC8KHgLaTLpZtlta9KK-9_b_XDR0zBv5r0Z-CF0ScmUUsFu9KKt_JQQytmUESqO0HiQWUJFmh-jMaEFT6gU-QidxbgghAhG6SkasSzNGWN8jNwMWt01Zt0B_kjK5huXvra-rnAbmg58jSm24LzxUJs19rUJoCNEvPRfEIZ-0YeNjFfeAHZgscZzX80Tp7ub2Fc6YOuhO0cnTi8jXOzrBL0_Przdz5KX16fn-7uXxKQF6RLtZJlljoEpCOgMsqxITe6sFIUTWhqXOUNdqTnjBbOSWsMFSLCktBK0K_gE3e5y275cgTVQd0EvVRv8Soe1arRX_ye1n6uq-VJpJjkr5BBwvQ8IzWcPsVOLpg_18LOiuaCM5bkgwxbZbZnQxBjAHS5QojZk1JaM2pJRGzKD5ervZwfDLwr-A3mejVU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751227750</pqid></control><display><type>article</type><title>Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Xiaoying ; Henkel, Anne S ; LeCuyer, Brian E ; Schipma, Matthew J ; Anderson, Kristy A ; Green, Richard M</creator><creatorcontrib>Liu, Xiaoying ; Henkel, Anne S ; LeCuyer, Brian E ; Schipma, Matthew J ; Anderson, Kristy A ; Green, Richard M</creatorcontrib><description>Fatty liver is associated with endoplasmic reticulum stress and activation of the hepatic unfolded protein response (UPR). Reduced hepatic expression of the UPR regulator X-box binding protein 1 spliced (XBP1s) is associated with human nonalcoholic steatohepatitis (NASH), and feeding mice a high-fat diet with fructose/sucrose causes progressive, fibrosing steatohepatitis. This study examines the role of XBP1 in nonalcoholic fatty liver injury and fatty acid-induced cell injury. Hepatocyte-specific Xbp1-deficient (Xbp1(-/-)) mice were fed a high-fat/sugar (HFS) diet for up to 16 wk. HFS-fed Xbp1(-/-) mice exhibited higher serum alanine aminotransferase levels compared with Xbp1(fl/fl) controls. RNA sequencing and Gene Ontogeny pathway analysis of hepatic mRNA revealed that apoptotic process, inflammatory response, and extracellular matrix structural constituent pathways had enhanced activation in HFS-fed Xbp1(-/-) mice. Liver histology demonstrated enhanced injury and fibrosis but less steatosis in the HFS-fed Xbp1(-/-) mice. Hepatic Col1a1 and Tgfβ1 gene expression, as well as Chop and phosphorylated JNK (p-JNK), were increased in Xbp1(-/-) compared with Xbp1(fl/fl) mice after HFS feeding. In vitro, stable XBP1-knockdown Huh7 cells (Huh7-KD) and scramble control cells (Huh7-SCR) were generated and treated with palmitic acid (PA) for 24 h. PA-treated Huh7-KD cells had increased cytotoxicity measured by lactate dehydrogenase release, apoptotic nuclei, and caspase3/7 activity assays compared with Huh7-SCR cells. CHOP and p-JNK expression was also increased in Huh7-KD cells following PA treatment. In conclusion, loss of XBP1 enhances injury in both in vivo and in vitro models of fatty liver injury. We speculate that hepatic XBP1 plays an important protective role in pathogenesis of NASH.</description><identifier>ISSN: 0193-1857</identifier><identifier>EISSN: 1522-1547</identifier><identifier>DOI: 10.1152/ajpgi.00132.2015</identifier><identifier>PMID: 26472223</identifier><identifier>CODEN: APGPDF</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Alanine Transaminase - blood ; Animals ; Apoptosis ; Binding sites ; Cell Line, Tumor ; Collagen Type I - genetics ; Collagen Type I - metabolism ; Collagen Type I, alpha 1 Chain ; Diet, High-Fat ; Dietary Sucrose ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - genetics ; Gene Expression Regulation ; Hepatocytes - drug effects ; Hepatocytes - metabolism ; Hepatocytes - pathology ; Hepatology ; Humans ; JNK Mitogen-Activated Protein Kinases - metabolism ; Liver - drug effects ; Liver - metabolism ; Liver - pathology ; Liver and Biliary Tract Physiology/Pathophysiology ; Liver Cirrhosis, Experimental - genetics ; Liver Cirrhosis, Experimental - metabolism ; Liver Cirrhosis, Experimental - pathology ; Liver diseases ; Male ; Mice, Inbred C57BL ; Mice, Knockout ; Non-alcoholic Fatty Liver Disease - etiology ; Non-alcoholic Fatty Liver Disease - genetics ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - pathology ; Palmitic Acid - toxicity ; Pathogenesis ; Phosphorylation ; Protein folding ; Regulatory Factor X Transcription Factors ; RNA, Messenger - metabolism ; Rodents ; Signal Transduction ; Stress response ; Time Factors ; Transcription Factor CHOP - genetics ; Transcription Factor CHOP - metabolism ; Transcription Factors - deficiency ; Transcription Factors - genetics ; Transfection ; Transforming Growth Factor beta1 - genetics ; Transforming Growth Factor beta1 - metabolism ; X-Box Binding Protein 1</subject><ispartof>American journal of physiology: Gastrointestinal and liver physiology, 2015-12, Vol.309 (12), p.G965-G974</ispartof><rights>Copyright © 2015 the American Physiological Society.</rights><rights>Copyright American Physiological Society Dec 15, 2015</rights><rights>Copyright © 2015 the American Physiological Society 2015 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-af8b66f2ec90ea6e6694c7fd859f5a8cf6fc1fba32392d81dc35e8ed0bd8eaf93</citedby><cites>FETCH-LOGICAL-c490t-af8b66f2ec90ea6e6694c7fd859f5a8cf6fc1fba32392d81dc35e8ed0bd8eaf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,3028,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26472223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiaoying</creatorcontrib><creatorcontrib>Henkel, Anne S</creatorcontrib><creatorcontrib>LeCuyer, Brian E</creatorcontrib><creatorcontrib>Schipma, Matthew J</creatorcontrib><creatorcontrib>Anderson, Kristy A</creatorcontrib><creatorcontrib>Green, Richard M</creatorcontrib><title>Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet</title><title>American journal of physiology: Gastrointestinal and liver physiology</title><addtitle>Am J Physiol Gastrointest Liver Physiol</addtitle><description>Fatty liver is associated with endoplasmic reticulum stress and activation of the hepatic unfolded protein response (UPR). Reduced hepatic expression of the UPR regulator X-box binding protein 1 spliced (XBP1s) is associated with human nonalcoholic steatohepatitis (NASH), and feeding mice a high-fat diet with fructose/sucrose causes progressive, fibrosing steatohepatitis. This study examines the role of XBP1 in nonalcoholic fatty liver injury and fatty acid-induced cell injury. Hepatocyte-specific Xbp1-deficient (Xbp1(-/-)) mice were fed a high-fat/sugar (HFS) diet for up to 16 wk. HFS-fed Xbp1(-/-) mice exhibited higher serum alanine aminotransferase levels compared with Xbp1(fl/fl) controls. RNA sequencing and Gene Ontogeny pathway analysis of hepatic mRNA revealed that apoptotic process, inflammatory response, and extracellular matrix structural constituent pathways had enhanced activation in HFS-fed Xbp1(-/-) mice. Liver histology demonstrated enhanced injury and fibrosis but less steatosis in the HFS-fed Xbp1(-/-) mice. Hepatic Col1a1 and Tgfβ1 gene expression, as well as Chop and phosphorylated JNK (p-JNK), were increased in Xbp1(-/-) compared with Xbp1(fl/fl) mice after HFS feeding. In vitro, stable XBP1-knockdown Huh7 cells (Huh7-KD) and scramble control cells (Huh7-SCR) were generated and treated with palmitic acid (PA) for 24 h. PA-treated Huh7-KD cells had increased cytotoxicity measured by lactate dehydrogenase release, apoptotic nuclei, and caspase3/7 activity assays compared with Huh7-SCR cells. CHOP and p-JNK expression was also increased in Huh7-KD cells following PA treatment. In conclusion, loss of XBP1 enhances injury in both in vivo and in vitro models of fatty liver injury. We speculate that hepatic XBP1 plays an important protective role in pathogenesis of NASH.</description><subject>Alanine Transaminase - blood</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Binding sites</subject><subject>Cell Line, Tumor</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I - metabolism</subject><subject>Collagen Type I, alpha 1 Chain</subject><subject>Diet, High-Fat</subject><subject>Dietary Sucrose</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Gene Expression Regulation</subject><subject>Hepatocytes - drug effects</subject><subject>Hepatocytes - metabolism</subject><subject>Hepatocytes - pathology</subject><subject>Hepatology</subject><subject>Humans</subject><subject>JNK Mitogen-Activated Protein Kinases - metabolism</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Liver and Biliary Tract Physiology/Pathophysiology</subject><subject>Liver Cirrhosis, Experimental - genetics</subject><subject>Liver Cirrhosis, Experimental - metabolism</subject><subject>Liver Cirrhosis, Experimental - pathology</subject><subject>Liver diseases</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Non-alcoholic Fatty Liver Disease - etiology</subject><subject>Non-alcoholic Fatty Liver Disease - genetics</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>Palmitic Acid - toxicity</subject><subject>Pathogenesis</subject><subject>Phosphorylation</subject><subject>Protein folding</subject><subject>Regulatory Factor X Transcription Factors</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Stress response</subject><subject>Time Factors</subject><subject>Transcription Factor CHOP - genetics</subject><subject>Transcription Factor CHOP - metabolism</subject><subject>Transcription Factors - deficiency</subject><subject>Transcription Factors - genetics</subject><subject>Transfection</subject><subject>Transforming Growth Factor beta1 - genetics</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>X-Box Binding Protein 1</subject><issn>0193-1857</issn><issn>1522-1547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1LxDAQxYMo7rp69yQBz13z0bTpRRBRVxC8KHgLaTLpZtlta9KK-9_b_XDR0zBv5r0Z-CF0ScmUUsFu9KKt_JQQytmUESqO0HiQWUJFmh-jMaEFT6gU-QidxbgghAhG6SkasSzNGWN8jNwMWt01Zt0B_kjK5huXvra-rnAbmg58jSm24LzxUJs19rUJoCNEvPRfEIZ-0YeNjFfeAHZgscZzX80Tp7ub2Fc6YOuhO0cnTi8jXOzrBL0_Przdz5KX16fn-7uXxKQF6RLtZJlljoEpCOgMsqxITe6sFIUTWhqXOUNdqTnjBbOSWsMFSLCktBK0K_gE3e5y275cgTVQd0EvVRv8Soe1arRX_ye1n6uq-VJpJjkr5BBwvQ8IzWcPsVOLpg_18LOiuaCM5bkgwxbZbZnQxBjAHS5QojZk1JaM2pJRGzKD5ervZwfDLwr-A3mejVU</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Liu, Xiaoying</creator><creator>Henkel, Anne S</creator><creator>LeCuyer, Brian E</creator><creator>Schipma, Matthew J</creator><creator>Anderson, Kristy A</creator><creator>Green, Richard M</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20151215</creationdate><title>Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet</title><author>Liu, Xiaoying ; Henkel, Anne S ; LeCuyer, Brian E ; Schipma, Matthew J ; Anderson, Kristy A ; Green, Richard M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-af8b66f2ec90ea6e6694c7fd859f5a8cf6fc1fba32392d81dc35e8ed0bd8eaf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alanine Transaminase - blood</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Binding sites</topic><topic>Cell Line, Tumor</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I - metabolism</topic><topic>Collagen Type I, alpha 1 Chain</topic><topic>Diet, High-Fat</topic><topic>Dietary Sucrose</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Gene Expression Regulation</topic><topic>Hepatocytes - drug effects</topic><topic>Hepatocytes - metabolism</topic><topic>Hepatocytes - pathology</topic><topic>Hepatology</topic><topic>Humans</topic><topic>JNK Mitogen-Activated Protein Kinases - metabolism</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Liver and Biliary Tract Physiology/Pathophysiology</topic><topic>Liver Cirrhosis, Experimental - genetics</topic><topic>Liver Cirrhosis, Experimental - metabolism</topic><topic>Liver Cirrhosis, Experimental - pathology</topic><topic>Liver diseases</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Non-alcoholic Fatty Liver Disease - etiology</topic><topic>Non-alcoholic Fatty Liver Disease - genetics</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>Palmitic Acid - toxicity</topic><topic>Pathogenesis</topic><topic>Phosphorylation</topic><topic>Protein folding</topic><topic>Regulatory Factor X Transcription Factors</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Stress response</topic><topic>Time Factors</topic><topic>Transcription Factor CHOP - genetics</topic><topic>Transcription Factor CHOP - metabolism</topic><topic>Transcription Factors - deficiency</topic><topic>Transcription Factors - genetics</topic><topic>Transfection</topic><topic>Transforming Growth Factor beta1 - genetics</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>X-Box Binding Protein 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaoying</creatorcontrib><creatorcontrib>Henkel, Anne S</creatorcontrib><creatorcontrib>LeCuyer, Brian E</creatorcontrib><creatorcontrib>Schipma, Matthew J</creatorcontrib><creatorcontrib>Anderson, Kristy A</creatorcontrib><creatorcontrib>Green, Richard M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physiology: Gastrointestinal and liver physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaoying</au><au>Henkel, Anne S</au><au>LeCuyer, Brian E</au><au>Schipma, Matthew J</au><au>Anderson, Kristy A</au><au>Green, Richard M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet</atitle><jtitle>American journal of physiology: Gastrointestinal and liver physiology</jtitle><addtitle>Am J Physiol Gastrointest Liver Physiol</addtitle><date>2015-12-15</date><risdate>2015</risdate><volume>309</volume><issue>12</issue><spage>G965</spage><epage>G974</epage><pages>G965-G974</pages><issn>0193-1857</issn><eissn>1522-1547</eissn><coden>APGPDF</coden><abstract>Fatty liver is associated with endoplasmic reticulum stress and activation of the hepatic unfolded protein response (UPR). Reduced hepatic expression of the UPR regulator X-box binding protein 1 spliced (XBP1s) is associated with human nonalcoholic steatohepatitis (NASH), and feeding mice a high-fat diet with fructose/sucrose causes progressive, fibrosing steatohepatitis. This study examines the role of XBP1 in nonalcoholic fatty liver injury and fatty acid-induced cell injury. Hepatocyte-specific Xbp1-deficient (Xbp1(-/-)) mice were fed a high-fat/sugar (HFS) diet for up to 16 wk. HFS-fed Xbp1(-/-) mice exhibited higher serum alanine aminotransferase levels compared with Xbp1(fl/fl) controls. RNA sequencing and Gene Ontogeny pathway analysis of hepatic mRNA revealed that apoptotic process, inflammatory response, and extracellular matrix structural constituent pathways had enhanced activation in HFS-fed Xbp1(-/-) mice. Liver histology demonstrated enhanced injury and fibrosis but less steatosis in the HFS-fed Xbp1(-/-) mice. Hepatic Col1a1 and Tgfβ1 gene expression, as well as Chop and phosphorylated JNK (p-JNK), were increased in Xbp1(-/-) compared with Xbp1(fl/fl) mice after HFS feeding. In vitro, stable XBP1-knockdown Huh7 cells (Huh7-KD) and scramble control cells (Huh7-SCR) were generated and treated with palmitic acid (PA) for 24 h. PA-treated Huh7-KD cells had increased cytotoxicity measured by lactate dehydrogenase release, apoptotic nuclei, and caspase3/7 activity assays compared with Huh7-SCR cells. CHOP and p-JNK expression was also increased in Huh7-KD cells following PA treatment. In conclusion, loss of XBP1 enhances injury in both in vivo and in vitro models of fatty liver injury. We speculate that hepatic XBP1 plays an important protective role in pathogenesis of NASH.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>26472223</pmid><doi>10.1152/ajpgi.00132.2015</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0193-1857
ispartof American journal of physiology: Gastrointestinal and liver physiology, 2015-12, Vol.309 (12), p.G965-G974
issn 0193-1857
1522-1547
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4683298
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Alanine Transaminase - blood
Animals
Apoptosis
Binding sites
Cell Line, Tumor
Collagen Type I - genetics
Collagen Type I - metabolism
Collagen Type I, alpha 1 Chain
Diet, High-Fat
Dietary Sucrose
DNA-Binding Proteins - deficiency
DNA-Binding Proteins - genetics
Gene Expression Regulation
Hepatocytes - drug effects
Hepatocytes - metabolism
Hepatocytes - pathology
Hepatology
Humans
JNK Mitogen-Activated Protein Kinases - metabolism
Liver - drug effects
Liver - metabolism
Liver - pathology
Liver and Biliary Tract Physiology/Pathophysiology
Liver Cirrhosis, Experimental - genetics
Liver Cirrhosis, Experimental - metabolism
Liver Cirrhosis, Experimental - pathology
Liver diseases
Male
Mice, Inbred C57BL
Mice, Knockout
Non-alcoholic Fatty Liver Disease - etiology
Non-alcoholic Fatty Liver Disease - genetics
Non-alcoholic Fatty Liver Disease - metabolism
Non-alcoholic Fatty Liver Disease - pathology
Palmitic Acid - toxicity
Pathogenesis
Phosphorylation
Protein folding
Regulatory Factor X Transcription Factors
RNA, Messenger - metabolism
Rodents
Signal Transduction
Stress response
Time Factors
Transcription Factor CHOP - genetics
Transcription Factor CHOP - metabolism
Transcription Factors - deficiency
Transcription Factors - genetics
Transfection
Transforming Growth Factor beta1 - genetics
Transforming Growth Factor beta1 - metabolism
X-Box Binding Protein 1
title Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hepatocyte%20X-box%20binding%20protein%201%20deficiency%20increases%20liver%20injury%20in%20mice%20fed%20a%20high-fat/sugar%20diet&rft.jtitle=American%20journal%20of%20physiology:%20Gastrointestinal%20and%20liver%20physiology&rft.au=Liu,%20Xiaoying&rft.date=2015-12-15&rft.volume=309&rft.issue=12&rft.spage=G965&rft.epage=G974&rft.pages=G965-G974&rft.issn=0193-1857&rft.eissn=1522-1547&rft.coden=APGPDF&rft_id=info:doi/10.1152/ajpgi.00132.2015&rft_dat=%3Cproquest_pubme%3E3902781861%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751227750&rft_id=info:pmid/26472223&rfr_iscdi=true