Kinetics of CO2 Reduction over Nonstoichiometric Ceria

The kinetics of CO2 reduction over nonstoichimetric ceria, CeO2−δ, a material of high potential for thermochemical conversion of sunlight to fuel, has been investigated for a wide range of nonstoichiometries (0.02 ≤ δ ≤ 0.25), temperatures (693 ≤ T ≤ 1273 K), and CO2 concentrations (0.005 ≤ p CO2 ≤...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2015-07, Vol.119 (29), p.16452-16461
Hauptverfasser: Ackermann, Simon, Sauvin, Laurent, Castiglioni, Roberto, Rupp, Jennifer L. M, Scheffe, Jonathan R, Steinfeld, Aldo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16461
container_issue 29
container_start_page 16452
container_title Journal of physical chemistry. C
container_volume 119
creator Ackermann, Simon
Sauvin, Laurent
Castiglioni, Roberto
Rupp, Jennifer L. M
Scheffe, Jonathan R
Steinfeld, Aldo
description The kinetics of CO2 reduction over nonstoichimetric ceria, CeO2−δ, a material of high potential for thermochemical conversion of sunlight to fuel, has been investigated for a wide range of nonstoichiometries (0.02 ≤ δ ≤ 0.25), temperatures (693 ≤ T ≤ 1273 K), and CO2 concentrations (0.005 ≤ p CO2 ≤ 0.4 atm). Samples were reduced thermally at 1773 K to probe low nonstoichiometries (δ < 0.05) and chemically at lower temperatures in a H2 atmosphere to prevent particle sintering and probe the effect of higher nonstoichiometries (δ < 0.25). For extents greater than δ = 0.2, oxidation rates at a given nonstoichiometry are hindered for the duration of the reaction, presumably because of near-order changes, such as lattice compression, as confirmed via Raman Spectroscopy. Importantly, this behavior is reversible and oxidation rates are not affected at lower δ. Following thermal reduction at very low δ, however, oxidation rates are an order of magnitude slower than those of chemically reduced samples, and rates monotonically increase with the initial nonstoichiometry (up to δ = 0.05). This dependence may be attributed to the formation of stable defect complexes formed between oxygen vacancies and polarons. When the same experiments are performed with 10 mol % Gd3+ doped ceria, in which defect complexes are less prevalent than in pure ceria, this dependence is not observed.
doi_str_mv 10.1021/acs.jpcc.5b03464
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4682555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067251210</sourcerecordid><originalsourceid>FETCH-LOGICAL-a454t-62f2579ab1e188164f157280ea74ad5461910003f6bb1e46859c54cbb5ce95233</originalsourceid><addsrcrecordid>eNqNkT1PwzAQhi0EoqWwM2ZkIMVf5yQLEor4EhWVEMyW4zrUVRIXO6nEv8elFRITTHe6e_QO74PQOcFTgim5UjpMV2utp1BhxgU_QGNSMJpmHODwZ-fZCJ2EsMIYGCbsGI2oEPGV4TEST7YzvdUhcXVSzmnyYhaD7q3rErcxPnl2Xeid1UvrWtN7q5PSeKtO0VGtmmDO9nOC3u5uX8uHdDa_fyxvZqniwPtU0JpCVqiKGJLnRPCaQEZzbFTG1QK4IAXBGLNaVBHhIodCA9dVBdoUQBmboOtd7nqoWrPQpuu9auTa21b5T-mUlb8_nV3Kd7eRMYsCQAy42Ad49zGY0MvWBm2aRnXGDUFSLDIKhBL8J0ryWFssOef_QQEoL2CLXu7Q6Equ3OC72JckWG4Fyu9jFCj3AtkXf26MdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825524954</pqid></control><display><type>article</type><title>Kinetics of CO2 Reduction over Nonstoichiometric Ceria</title><source>American Chemical Society Journals</source><creator>Ackermann, Simon ; Sauvin, Laurent ; Castiglioni, Roberto ; Rupp, Jennifer L. M ; Scheffe, Jonathan R ; Steinfeld, Aldo</creator><creatorcontrib>Ackermann, Simon ; Sauvin, Laurent ; Castiglioni, Roberto ; Rupp, Jennifer L. M ; Scheffe, Jonathan R ; Steinfeld, Aldo</creatorcontrib><description>The kinetics of CO2 reduction over nonstoichimetric ceria, CeO2−δ, a material of high potential for thermochemical conversion of sunlight to fuel, has been investigated for a wide range of nonstoichiometries (0.02 ≤ δ ≤ 0.25), temperatures (693 ≤ T ≤ 1273 K), and CO2 concentrations (0.005 ≤ p CO2 ≤ 0.4 atm). Samples were reduced thermally at 1773 K to probe low nonstoichiometries (δ &lt; 0.05) and chemically at lower temperatures in a H2 atmosphere to prevent particle sintering and probe the effect of higher nonstoichiometries (δ &lt; 0.25). For extents greater than δ = 0.2, oxidation rates at a given nonstoichiometry are hindered for the duration of the reaction, presumably because of near-order changes, such as lattice compression, as confirmed via Raman Spectroscopy. Importantly, this behavior is reversible and oxidation rates are not affected at lower δ. Following thermal reduction at very low δ, however, oxidation rates are an order of magnitude slower than those of chemically reduced samples, and rates monotonically increase with the initial nonstoichiometry (up to δ = 0.05). This dependence may be attributed to the formation of stable defect complexes formed between oxygen vacancies and polarons. When the same experiments are performed with 10 mol % Gd3+ doped ceria, in which defect complexes are less prevalent than in pure ceria, this dependence is not observed.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b03464</identifier><identifier>PMID: 26693270</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Carbon dioxide ; Cerium oxide ; Compressing ; Defects ; fuels ; hydrogen ; Nanomaterials ; oxidation ; Oxidation rate ; oxygen ; physical chemistry ; Raman spectroscopy ; Reduction ; solar radiation ; Sunlight ; temperature</subject><ispartof>Journal of physical chemistry. C, 2015-07, Vol.119 (29), p.16452-16461</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright © 2015 American Chemical Society 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b03464$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b03464$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Ackermann, Simon</creatorcontrib><creatorcontrib>Sauvin, Laurent</creatorcontrib><creatorcontrib>Castiglioni, Roberto</creatorcontrib><creatorcontrib>Rupp, Jennifer L. M</creatorcontrib><creatorcontrib>Scheffe, Jonathan R</creatorcontrib><creatorcontrib>Steinfeld, Aldo</creatorcontrib><title>Kinetics of CO2 Reduction over Nonstoichiometric Ceria</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The kinetics of CO2 reduction over nonstoichimetric ceria, CeO2−δ, a material of high potential for thermochemical conversion of sunlight to fuel, has been investigated for a wide range of nonstoichiometries (0.02 ≤ δ ≤ 0.25), temperatures (693 ≤ T ≤ 1273 K), and CO2 concentrations (0.005 ≤ p CO2 ≤ 0.4 atm). Samples were reduced thermally at 1773 K to probe low nonstoichiometries (δ &lt; 0.05) and chemically at lower temperatures in a H2 atmosphere to prevent particle sintering and probe the effect of higher nonstoichiometries (δ &lt; 0.25). For extents greater than δ = 0.2, oxidation rates at a given nonstoichiometry are hindered for the duration of the reaction, presumably because of near-order changes, such as lattice compression, as confirmed via Raman Spectroscopy. Importantly, this behavior is reversible and oxidation rates are not affected at lower δ. Following thermal reduction at very low δ, however, oxidation rates are an order of magnitude slower than those of chemically reduced samples, and rates monotonically increase with the initial nonstoichiometry (up to δ = 0.05). This dependence may be attributed to the formation of stable defect complexes formed between oxygen vacancies and polarons. When the same experiments are performed with 10 mol % Gd3+ doped ceria, in which defect complexes are less prevalent than in pure ceria, this dependence is not observed.</description><subject>Carbon dioxide</subject><subject>Cerium oxide</subject><subject>Compressing</subject><subject>Defects</subject><subject>fuels</subject><subject>hydrogen</subject><subject>Nanomaterials</subject><subject>oxidation</subject><subject>Oxidation rate</subject><subject>oxygen</subject><subject>physical chemistry</subject><subject>Raman spectroscopy</subject><subject>Reduction</subject><subject>solar radiation</subject><subject>Sunlight</subject><subject>temperature</subject><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNqNkT1PwzAQhi0EoqWwM2ZkIMVf5yQLEor4EhWVEMyW4zrUVRIXO6nEv8elFRITTHe6e_QO74PQOcFTgim5UjpMV2utp1BhxgU_QGNSMJpmHODwZ-fZCJ2EsMIYGCbsGI2oEPGV4TEST7YzvdUhcXVSzmnyYhaD7q3rErcxPnl2Xeid1UvrWtN7q5PSeKtO0VGtmmDO9nOC3u5uX8uHdDa_fyxvZqniwPtU0JpCVqiKGJLnRPCaQEZzbFTG1QK4IAXBGLNaVBHhIodCA9dVBdoUQBmboOtd7nqoWrPQpuu9auTa21b5T-mUlb8_nV3Kd7eRMYsCQAy42Ad49zGY0MvWBm2aRnXGDUFSLDIKhBL8J0ryWFssOef_QQEoL2CLXu7Q6Equ3OC72JckWG4Fyu9jFCj3AtkXf26MdA</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Ackermann, Simon</creator><creator>Sauvin, Laurent</creator><creator>Castiglioni, Roberto</creator><creator>Rupp, Jennifer L. M</creator><creator>Scheffe, Jonathan R</creator><creator>Steinfeld, Aldo</creator><general>American Chemical Society</general><scope>N~.</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150723</creationdate><title>Kinetics of CO2 Reduction over Nonstoichiometric Ceria</title><author>Ackermann, Simon ; Sauvin, Laurent ; Castiglioni, Roberto ; Rupp, Jennifer L. M ; Scheffe, Jonathan R ; Steinfeld, Aldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a454t-62f2579ab1e188164f157280ea74ad5461910003f6bb1e46859c54cbb5ce95233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon dioxide</topic><topic>Cerium oxide</topic><topic>Compressing</topic><topic>Defects</topic><topic>fuels</topic><topic>hydrogen</topic><topic>Nanomaterials</topic><topic>oxidation</topic><topic>Oxidation rate</topic><topic>oxygen</topic><topic>physical chemistry</topic><topic>Raman spectroscopy</topic><topic>Reduction</topic><topic>solar radiation</topic><topic>Sunlight</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ackermann, Simon</creatorcontrib><creatorcontrib>Sauvin, Laurent</creatorcontrib><creatorcontrib>Castiglioni, Roberto</creatorcontrib><creatorcontrib>Rupp, Jennifer L. M</creatorcontrib><creatorcontrib>Scheffe, Jonathan R</creatorcontrib><creatorcontrib>Steinfeld, Aldo</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ackermann, Simon</au><au>Sauvin, Laurent</au><au>Castiglioni, Roberto</au><au>Rupp, Jennifer L. M</au><au>Scheffe, Jonathan R</au><au>Steinfeld, Aldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of CO2 Reduction over Nonstoichiometric Ceria</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-07-23</date><risdate>2015</risdate><volume>119</volume><issue>29</issue><spage>16452</spage><epage>16461</epage><pages>16452-16461</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>The kinetics of CO2 reduction over nonstoichimetric ceria, CeO2−δ, a material of high potential for thermochemical conversion of sunlight to fuel, has been investigated for a wide range of nonstoichiometries (0.02 ≤ δ ≤ 0.25), temperatures (693 ≤ T ≤ 1273 K), and CO2 concentrations (0.005 ≤ p CO2 ≤ 0.4 atm). Samples were reduced thermally at 1773 K to probe low nonstoichiometries (δ &lt; 0.05) and chemically at lower temperatures in a H2 atmosphere to prevent particle sintering and probe the effect of higher nonstoichiometries (δ &lt; 0.25). For extents greater than δ = 0.2, oxidation rates at a given nonstoichiometry are hindered for the duration of the reaction, presumably because of near-order changes, such as lattice compression, as confirmed via Raman Spectroscopy. Importantly, this behavior is reversible and oxidation rates are not affected at lower δ. Following thermal reduction at very low δ, however, oxidation rates are an order of magnitude slower than those of chemically reduced samples, and rates monotonically increase with the initial nonstoichiometry (up to δ = 0.05). This dependence may be attributed to the formation of stable defect complexes formed between oxygen vacancies and polarons. When the same experiments are performed with 10 mol % Gd3+ doped ceria, in which defect complexes are less prevalent than in pure ceria, this dependence is not observed.</abstract><pub>American Chemical Society</pub><pmid>26693270</pmid><doi>10.1021/acs.jpcc.5b03464</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2015-07, Vol.119 (29), p.16452-16461
issn 1932-7447
1932-7455
1932-7455
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4682555
source American Chemical Society Journals
subjects Carbon dioxide
Cerium oxide
Compressing
Defects
fuels
hydrogen
Nanomaterials
oxidation
Oxidation rate
oxygen
physical chemistry
Raman spectroscopy
Reduction
solar radiation
Sunlight
temperature
title Kinetics of CO2 Reduction over Nonstoichiometric Ceria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20CO2%20Reduction%20over%20Nonstoichiometric%20Ceria&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Ackermann,%20Simon&rft.date=2015-07-23&rft.volume=119&rft.issue=29&rft.spage=16452&rft.epage=16461&rft.pages=16452-16461&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b03464&rft_dat=%3Cproquest_pubme%3E2067251210%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825524954&rft_id=info:pmid/26693270&rfr_iscdi=true