Kinetics of CO2 Reduction over Nonstoichiometric Ceria
The kinetics of CO2 reduction over nonstoichimetric ceria, CeO2−δ, a material of high potential for thermochemical conversion of sunlight to fuel, has been investigated for a wide range of nonstoichiometries (0.02 ≤ δ ≤ 0.25), temperatures (693 ≤ T ≤ 1273 K), and CO2 concentrations (0.005 ≤ p CO2 ≤...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2015-07, Vol.119 (29), p.16452-16461 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16461 |
---|---|
container_issue | 29 |
container_start_page | 16452 |
container_title | Journal of physical chemistry. C |
container_volume | 119 |
creator | Ackermann, Simon Sauvin, Laurent Castiglioni, Roberto Rupp, Jennifer L. M Scheffe, Jonathan R Steinfeld, Aldo |
description | The kinetics of CO2 reduction over nonstoichimetric ceria, CeO2−δ, a material of high potential for thermochemical conversion of sunlight to fuel, has been investigated for a wide range of nonstoichiometries (0.02 ≤ δ ≤ 0.25), temperatures (693 ≤ T ≤ 1273 K), and CO2 concentrations (0.005 ≤ p CO2 ≤ 0.4 atm). Samples were reduced thermally at 1773 K to probe low nonstoichiometries (δ < 0.05) and chemically at lower temperatures in a H2 atmosphere to prevent particle sintering and probe the effect of higher nonstoichiometries (δ < 0.25). For extents greater than δ = 0.2, oxidation rates at a given nonstoichiometry are hindered for the duration of the reaction, presumably because of near-order changes, such as lattice compression, as confirmed via Raman Spectroscopy. Importantly, this behavior is reversible and oxidation rates are not affected at lower δ. Following thermal reduction at very low δ, however, oxidation rates are an order of magnitude slower than those of chemically reduced samples, and rates monotonically increase with the initial nonstoichiometry (up to δ = 0.05). This dependence may be attributed to the formation of stable defect complexes formed between oxygen vacancies and polarons. When the same experiments are performed with 10 mol % Gd3+ doped ceria, in which defect complexes are less prevalent than in pure ceria, this dependence is not observed. |
doi_str_mv | 10.1021/acs.jpcc.5b03464 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4682555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067251210</sourcerecordid><originalsourceid>FETCH-LOGICAL-a454t-62f2579ab1e188164f157280ea74ad5461910003f6bb1e46859c54cbb5ce95233</originalsourceid><addsrcrecordid>eNqNkT1PwzAQhi0EoqWwM2ZkIMVf5yQLEor4EhWVEMyW4zrUVRIXO6nEv8elFRITTHe6e_QO74PQOcFTgim5UjpMV2utp1BhxgU_QGNSMJpmHODwZ-fZCJ2EsMIYGCbsGI2oEPGV4TEST7YzvdUhcXVSzmnyYhaD7q3rErcxPnl2Xeid1UvrWtN7q5PSeKtO0VGtmmDO9nOC3u5uX8uHdDa_fyxvZqniwPtU0JpCVqiKGJLnRPCaQEZzbFTG1QK4IAXBGLNaVBHhIodCA9dVBdoUQBmboOtd7nqoWrPQpuu9auTa21b5T-mUlb8_nV3Kd7eRMYsCQAy42Ad49zGY0MvWBm2aRnXGDUFSLDIKhBL8J0ryWFssOef_QQEoL2CLXu7Q6Equ3OC72JckWG4Fyu9jFCj3AtkXf26MdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825524954</pqid></control><display><type>article</type><title>Kinetics of CO2 Reduction over Nonstoichiometric Ceria</title><source>American Chemical Society Journals</source><creator>Ackermann, Simon ; Sauvin, Laurent ; Castiglioni, Roberto ; Rupp, Jennifer L. M ; Scheffe, Jonathan R ; Steinfeld, Aldo</creator><creatorcontrib>Ackermann, Simon ; Sauvin, Laurent ; Castiglioni, Roberto ; Rupp, Jennifer L. M ; Scheffe, Jonathan R ; Steinfeld, Aldo</creatorcontrib><description>The kinetics of CO2 reduction over nonstoichimetric ceria, CeO2−δ, a material of high potential for thermochemical conversion of sunlight to fuel, has been investigated for a wide range of nonstoichiometries (0.02 ≤ δ ≤ 0.25), temperatures (693 ≤ T ≤ 1273 K), and CO2 concentrations (0.005 ≤ p CO2 ≤ 0.4 atm). Samples were reduced thermally at 1773 K to probe low nonstoichiometries (δ < 0.05) and chemically at lower temperatures in a H2 atmosphere to prevent particle sintering and probe the effect of higher nonstoichiometries (δ < 0.25). For extents greater than δ = 0.2, oxidation rates at a given nonstoichiometry are hindered for the duration of the reaction, presumably because of near-order changes, such as lattice compression, as confirmed via Raman Spectroscopy. Importantly, this behavior is reversible and oxidation rates are not affected at lower δ. Following thermal reduction at very low δ, however, oxidation rates are an order of magnitude slower than those of chemically reduced samples, and rates monotonically increase with the initial nonstoichiometry (up to δ = 0.05). This dependence may be attributed to the formation of stable defect complexes formed between oxygen vacancies and polarons. When the same experiments are performed with 10 mol % Gd3+ doped ceria, in which defect complexes are less prevalent than in pure ceria, this dependence is not observed.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b03464</identifier><identifier>PMID: 26693270</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Carbon dioxide ; Cerium oxide ; Compressing ; Defects ; fuels ; hydrogen ; Nanomaterials ; oxidation ; Oxidation rate ; oxygen ; physical chemistry ; Raman spectroscopy ; Reduction ; solar radiation ; Sunlight ; temperature</subject><ispartof>Journal of physical chemistry. C, 2015-07, Vol.119 (29), p.16452-16461</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright © 2015 American Chemical Society 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b03464$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b03464$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Ackermann, Simon</creatorcontrib><creatorcontrib>Sauvin, Laurent</creatorcontrib><creatorcontrib>Castiglioni, Roberto</creatorcontrib><creatorcontrib>Rupp, Jennifer L. M</creatorcontrib><creatorcontrib>Scheffe, Jonathan R</creatorcontrib><creatorcontrib>Steinfeld, Aldo</creatorcontrib><title>Kinetics of CO2 Reduction over Nonstoichiometric Ceria</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The kinetics of CO2 reduction over nonstoichimetric ceria, CeO2−δ, a material of high potential for thermochemical conversion of sunlight to fuel, has been investigated for a wide range of nonstoichiometries (0.02 ≤ δ ≤ 0.25), temperatures (693 ≤ T ≤ 1273 K), and CO2 concentrations (0.005 ≤ p CO2 ≤ 0.4 atm). Samples were reduced thermally at 1773 K to probe low nonstoichiometries (δ < 0.05) and chemically at lower temperatures in a H2 atmosphere to prevent particle sintering and probe the effect of higher nonstoichiometries (δ < 0.25). For extents greater than δ = 0.2, oxidation rates at a given nonstoichiometry are hindered for the duration of the reaction, presumably because of near-order changes, such as lattice compression, as confirmed via Raman Spectroscopy. Importantly, this behavior is reversible and oxidation rates are not affected at lower δ. Following thermal reduction at very low δ, however, oxidation rates are an order of magnitude slower than those of chemically reduced samples, and rates monotonically increase with the initial nonstoichiometry (up to δ = 0.05). This dependence may be attributed to the formation of stable defect complexes formed between oxygen vacancies and polarons. When the same experiments are performed with 10 mol % Gd3+ doped ceria, in which defect complexes are less prevalent than in pure ceria, this dependence is not observed.</description><subject>Carbon dioxide</subject><subject>Cerium oxide</subject><subject>Compressing</subject><subject>Defects</subject><subject>fuels</subject><subject>hydrogen</subject><subject>Nanomaterials</subject><subject>oxidation</subject><subject>Oxidation rate</subject><subject>oxygen</subject><subject>physical chemistry</subject><subject>Raman spectroscopy</subject><subject>Reduction</subject><subject>solar radiation</subject><subject>Sunlight</subject><subject>temperature</subject><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNqNkT1PwzAQhi0EoqWwM2ZkIMVf5yQLEor4EhWVEMyW4zrUVRIXO6nEv8elFRITTHe6e_QO74PQOcFTgim5UjpMV2utp1BhxgU_QGNSMJpmHODwZ-fZCJ2EsMIYGCbsGI2oEPGV4TEST7YzvdUhcXVSzmnyYhaD7q3rErcxPnl2Xeid1UvrWtN7q5PSeKtO0VGtmmDO9nOC3u5uX8uHdDa_fyxvZqniwPtU0JpCVqiKGJLnRPCaQEZzbFTG1QK4IAXBGLNaVBHhIodCA9dVBdoUQBmboOtd7nqoWrPQpuu9auTa21b5T-mUlb8_nV3Kd7eRMYsCQAy42Ad49zGY0MvWBm2aRnXGDUFSLDIKhBL8J0ryWFssOef_QQEoL2CLXu7Q6Equ3OC72JckWG4Fyu9jFCj3AtkXf26MdA</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Ackermann, Simon</creator><creator>Sauvin, Laurent</creator><creator>Castiglioni, Roberto</creator><creator>Rupp, Jennifer L. M</creator><creator>Scheffe, Jonathan R</creator><creator>Steinfeld, Aldo</creator><general>American Chemical Society</general><scope>N~.</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150723</creationdate><title>Kinetics of CO2 Reduction over Nonstoichiometric Ceria</title><author>Ackermann, Simon ; Sauvin, Laurent ; Castiglioni, Roberto ; Rupp, Jennifer L. M ; Scheffe, Jonathan R ; Steinfeld, Aldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a454t-62f2579ab1e188164f157280ea74ad5461910003f6bb1e46859c54cbb5ce95233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon dioxide</topic><topic>Cerium oxide</topic><topic>Compressing</topic><topic>Defects</topic><topic>fuels</topic><topic>hydrogen</topic><topic>Nanomaterials</topic><topic>oxidation</topic><topic>Oxidation rate</topic><topic>oxygen</topic><topic>physical chemistry</topic><topic>Raman spectroscopy</topic><topic>Reduction</topic><topic>solar radiation</topic><topic>Sunlight</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ackermann, Simon</creatorcontrib><creatorcontrib>Sauvin, Laurent</creatorcontrib><creatorcontrib>Castiglioni, Roberto</creatorcontrib><creatorcontrib>Rupp, Jennifer L. M</creatorcontrib><creatorcontrib>Scheffe, Jonathan R</creatorcontrib><creatorcontrib>Steinfeld, Aldo</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ackermann, Simon</au><au>Sauvin, Laurent</au><au>Castiglioni, Roberto</au><au>Rupp, Jennifer L. M</au><au>Scheffe, Jonathan R</au><au>Steinfeld, Aldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of CO2 Reduction over Nonstoichiometric Ceria</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-07-23</date><risdate>2015</risdate><volume>119</volume><issue>29</issue><spage>16452</spage><epage>16461</epage><pages>16452-16461</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>The kinetics of CO2 reduction over nonstoichimetric ceria, CeO2−δ, a material of high potential for thermochemical conversion of sunlight to fuel, has been investigated for a wide range of nonstoichiometries (0.02 ≤ δ ≤ 0.25), temperatures (693 ≤ T ≤ 1273 K), and CO2 concentrations (0.005 ≤ p CO2 ≤ 0.4 atm). Samples were reduced thermally at 1773 K to probe low nonstoichiometries (δ < 0.05) and chemically at lower temperatures in a H2 atmosphere to prevent particle sintering and probe the effect of higher nonstoichiometries (δ < 0.25). For extents greater than δ = 0.2, oxidation rates at a given nonstoichiometry are hindered for the duration of the reaction, presumably because of near-order changes, such as lattice compression, as confirmed via Raman Spectroscopy. Importantly, this behavior is reversible and oxidation rates are not affected at lower δ. Following thermal reduction at very low δ, however, oxidation rates are an order of magnitude slower than those of chemically reduced samples, and rates monotonically increase with the initial nonstoichiometry (up to δ = 0.05). This dependence may be attributed to the formation of stable defect complexes formed between oxygen vacancies and polarons. When the same experiments are performed with 10 mol % Gd3+ doped ceria, in which defect complexes are less prevalent than in pure ceria, this dependence is not observed.</abstract><pub>American Chemical Society</pub><pmid>26693270</pmid><doi>10.1021/acs.jpcc.5b03464</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2015-07, Vol.119 (29), p.16452-16461 |
issn | 1932-7447 1932-7455 1932-7455 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4682555 |
source | American Chemical Society Journals |
subjects | Carbon dioxide Cerium oxide Compressing Defects fuels hydrogen Nanomaterials oxidation Oxidation rate oxygen physical chemistry Raman spectroscopy Reduction solar radiation Sunlight temperature |
title | Kinetics of CO2 Reduction over Nonstoichiometric Ceria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20CO2%20Reduction%20over%20Nonstoichiometric%20Ceria&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Ackermann,%20Simon&rft.date=2015-07-23&rft.volume=119&rft.issue=29&rft.spage=16452&rft.epage=16461&rft.pages=16452-16461&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b03464&rft_dat=%3Cproquest_pubme%3E2067251210%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825524954&rft_id=info:pmid/26693270&rfr_iscdi=true |