Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways

Seed longevity, the maintenance of viability during storage, is a crucial factor for preservation of genetic resources and ensuring proper seedling establishment and high crop yield. We used a systems biology approach to identify key genes regulating the acquisition of longevity during seed maturati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2015-10, Vol.27 (10), p.2692-2708
Hauptverfasser: Righetti, Karima, Vu, Joseph Ly, Pelletier, Sandra, Vu, Benoit Ly, Glaab, Enrico, Lalanne, David, Pasha, Asher, Patel, Rohan V., Provart, Nicholas J., Verdier, Jerome, Leprince, Olivier, Buitink, Julia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2708
container_issue 10
container_start_page 2692
container_title The Plant cell
container_volume 27
creator Righetti, Karima
Vu, Joseph Ly
Pelletier, Sandra
Vu, Benoit Ly
Glaab, Enrico
Lalanne, David
Pasha, Asher
Patel, Rohan V.
Provart, Nicholas J.
Verdier, Jerome
Leprince, Olivier
Buitink, Julia
description Seed longevity, the maintenance of viability during storage, is a crucial factor for preservation of genetic resources and ensuring proper seedling establishment and high crop yield. We used a systems biology approach to identify key genes regulating the acquisition of longevity during seed maturation of Medicago truncatula. Using 104 transcriptomes from seed developmental time courses obtained in five growth environments, we generated a robust, stable coexpression network (MatNet), thereby capturing the conserved backbone of maturation. Using a trait-based gene significance measure, a coexpression module related to the acquisition of longevity was inferred from MatNet. Comparative analysis of the maturation processes in M. truncatula and Arabidopsis thaliana seeds and mining Arabidopsis interaction databases revealed conserved connectivity for 87% of longevity module nodes between both species. Arabidopsis mutant screening for longevity and maturation phenotypes demonstrated high predictive power of the longevity cross-species network. Overrepresentation analysis of the network nodes indicated biological functions related to defense, light, and auxin. Characterization of defense-related wrky3 and nf-x1-like1 (nfxl1) transcription factor mutants demonstrated that these genes regulate some of the network nodes and exhibit impaired acquisition of longevity during maturation. These data suggest that seed longevity evolved by co-opting existing genetic pathways regulating the activation of defense against pathogens.
doi_str_mv 10.1105/tpc.15.00632
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4682330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>plantcell.27.10.2692</jstor_id><sourcerecordid>plantcell.27.10.2692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-996f15888cabb33753c5a51432cb9814fe24db73b1fac35a4f1a385eb53568623</originalsourceid><addsrcrecordid>eNqFkktvEzEUhUcIREthxxp5CRIT_BjPeDZIJUAbKTyUgsTO8jjXqduJHWxPSv4TPxIPKeGxYWXL97vn3iOfonhM8IQQzF-kjZ4QPsG4ZvROcUw4oyVtxZe7-Y4rXFY1J0fFgxivMMakIe394ojWFcEZOi6-z5yBAE4D8gbNvVvB1qZduYBeJViiM3AQkQl-jRRa-G6ICU09fNsEiNF6h95DuvHheuy-gNzwTqUhqDSWZktwyRqbBRawGrKgDxHNrbu2brWnL_KT6myfR6Lk0Svrk9XoNRhwEQ5LfFTp8kbt4sPinlF9hEe350nx-e2bT9Pzcv7hbDY9nZe6EjyVbVsbwoUQWnUdYw1nmitOKkZ11wpSGaDVsmtYR4zSjKvKEMUEh44zXouaspPi5V53M3RrWOpsI6heboJdq7CTXln5d8XZS7nyW1nVgjKGs8CzvcDlP23np3M5vmHCWtrgZksy-_R2WPBfB4hJrm3U0PfKgR-iJAKLummJEP9HG0Ya0dbVaOH5HtXBxxjAHNYgWI65kTk3knD5MzcZf_Kn4wP8Kyi_HV3F_GWH-iaPTuMGkjajMq1byn4A2NnP0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731789642</pqid></control><display><type>article</type><title>Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Righetti, Karima ; Vu, Joseph Ly ; Pelletier, Sandra ; Vu, Benoit Ly ; Glaab, Enrico ; Lalanne, David ; Pasha, Asher ; Patel, Rohan V. ; Provart, Nicholas J. ; Verdier, Jerome ; Leprince, Olivier ; Buitink, Julia</creator><creatorcontrib>Righetti, Karima ; Vu, Joseph Ly ; Pelletier, Sandra ; Vu, Benoit Ly ; Glaab, Enrico ; Lalanne, David ; Pasha, Asher ; Patel, Rohan V. ; Provart, Nicholas J. ; Verdier, Jerome ; Leprince, Olivier ; Buitink, Julia</creatorcontrib><description>Seed longevity, the maintenance of viability during storage, is a crucial factor for preservation of genetic resources and ensuring proper seedling establishment and high crop yield. We used a systems biology approach to identify key genes regulating the acquisition of longevity during seed maturation of Medicago truncatula. Using 104 transcriptomes from seed developmental time courses obtained in five growth environments, we generated a robust, stable coexpression network (MatNet), thereby capturing the conserved backbone of maturation. Using a trait-based gene significance measure, a coexpression module related to the acquisition of longevity was inferred from MatNet. Comparative analysis of the maturation processes in M. truncatula and Arabidopsis thaliana seeds and mining Arabidopsis interaction databases revealed conserved connectivity for 87% of longevity module nodes between both species. Arabidopsis mutant screening for longevity and maturation phenotypes demonstrated high predictive power of the longevity cross-species network. Overrepresentation analysis of the network nodes indicated biological functions related to defense, light, and auxin. Characterization of defense-related wrky3 and nf-x1-like1 (nfxl1) transcription factor mutants demonstrated that these genes regulate some of the network nodes and exhibit impaired acquisition of longevity during maturation. These data suggest that seed longevity evolved by co-opting existing genetic pathways regulating the activation of defense against pathogens.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.15.00632</identifier><identifier>PMID: 26410298</identifier><language>eng</language><publisher>England: American Society of Plant Biologists</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - physiology ; Arabidopsis thaliana ; Biological Evolution ; Datasets ; Developmental biology ; Environment ; Gene expression regulation ; Gene Expression Regulation, Plant ; Gene Regulatory Networks ; Genes ; Germination ; Large-Scale Biology ; LARGE-SCALE BIOLOGY ARTICLE ; Life Sciences ; Longevity ; Medicago truncatula ; Medicago truncatula - genetics ; Medicago truncatula - growth &amp; development ; Medicago truncatula - physiology ; Mutation ; Pathogens ; Phenotype ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Seed longevity ; Seeds ; Seeds - genetics ; Seeds - growth &amp; development ; Seeds - physiology ; Time Factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptome</subject><ispartof>The Plant cell, 2015-10, Vol.27 (10), p.2692-2708</ispartof><rights>2015 American Society of Plant Biologists</rights><rights>2015 American Society of Plant Biologists. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2015 American Society of Plant Biologists. All rights reserved. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-996f15888cabb33753c5a51432cb9814fe24db73b1fac35a4f1a385eb53568623</citedby><orcidid>0000-0002-1457-764X ; 0000-0003-3977-7469 ; 0000-0001-7582-2939 ; 0009-0004-6166-270X ; 0000-0003-3039-2159 ; 0000-0003-1414-8690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/plantcell.27.10.2692$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/plantcell.27.10.2692$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,886,27928,27929,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26410298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01392707$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Righetti, Karima</creatorcontrib><creatorcontrib>Vu, Joseph Ly</creatorcontrib><creatorcontrib>Pelletier, Sandra</creatorcontrib><creatorcontrib>Vu, Benoit Ly</creatorcontrib><creatorcontrib>Glaab, Enrico</creatorcontrib><creatorcontrib>Lalanne, David</creatorcontrib><creatorcontrib>Pasha, Asher</creatorcontrib><creatorcontrib>Patel, Rohan V.</creatorcontrib><creatorcontrib>Provart, Nicholas J.</creatorcontrib><creatorcontrib>Verdier, Jerome</creatorcontrib><creatorcontrib>Leprince, Olivier</creatorcontrib><creatorcontrib>Buitink, Julia</creatorcontrib><title>Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>Seed longevity, the maintenance of viability during storage, is a crucial factor for preservation of genetic resources and ensuring proper seedling establishment and high crop yield. We used a systems biology approach to identify key genes regulating the acquisition of longevity during seed maturation of Medicago truncatula. Using 104 transcriptomes from seed developmental time courses obtained in five growth environments, we generated a robust, stable coexpression network (MatNet), thereby capturing the conserved backbone of maturation. Using a trait-based gene significance measure, a coexpression module related to the acquisition of longevity was inferred from MatNet. Comparative analysis of the maturation processes in M. truncatula and Arabidopsis thaliana seeds and mining Arabidopsis interaction databases revealed conserved connectivity for 87% of longevity module nodes between both species. Arabidopsis mutant screening for longevity and maturation phenotypes demonstrated high predictive power of the longevity cross-species network. Overrepresentation analysis of the network nodes indicated biological functions related to defense, light, and auxin. Characterization of defense-related wrky3 and nf-x1-like1 (nfxl1) transcription factor mutants demonstrated that these genes regulate some of the network nodes and exhibit impaired acquisition of longevity during maturation. These data suggest that seed longevity evolved by co-opting existing genetic pathways regulating the activation of defense against pathogens.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis thaliana</subject><subject>Biological Evolution</subject><subject>Datasets</subject><subject>Developmental biology</subject><subject>Environment</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Germination</subject><subject>Large-Scale Biology</subject><subject>LARGE-SCALE BIOLOGY ARTICLE</subject><subject>Life Sciences</subject><subject>Longevity</subject><subject>Medicago truncatula</subject><subject>Medicago truncatula - genetics</subject><subject>Medicago truncatula - growth &amp; development</subject><subject>Medicago truncatula - physiology</subject><subject>Mutation</subject><subject>Pathogens</subject><subject>Phenotype</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Seed longevity</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Seeds - growth &amp; development</subject><subject>Seeds - physiology</subject><subject>Time Factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptome</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktvEzEUhUcIREthxxp5CRIT_BjPeDZIJUAbKTyUgsTO8jjXqduJHWxPSv4TPxIPKeGxYWXL97vn3iOfonhM8IQQzF-kjZ4QPsG4ZvROcUw4oyVtxZe7-Y4rXFY1J0fFgxivMMakIe394ojWFcEZOi6-z5yBAE4D8gbNvVvB1qZduYBeJViiM3AQkQl-jRRa-G6ICU09fNsEiNF6h95DuvHheuy-gNzwTqUhqDSWZktwyRqbBRawGrKgDxHNrbu2brWnL_KT6myfR6Lk0Svrk9XoNRhwEQ5LfFTp8kbt4sPinlF9hEe350nx-e2bT9Pzcv7hbDY9nZe6EjyVbVsbwoUQWnUdYw1nmitOKkZ11wpSGaDVsmtYR4zSjKvKEMUEh44zXouaspPi5V53M3RrWOpsI6heboJdq7CTXln5d8XZS7nyW1nVgjKGs8CzvcDlP23np3M5vmHCWtrgZksy-_R2WPBfB4hJrm3U0PfKgR-iJAKLummJEP9HG0Ya0dbVaOH5HtXBxxjAHNYgWI65kTk3knD5MzcZf_Kn4wP8Kyi_HV3F_GWH-iaPTuMGkjajMq1byn4A2NnP0w</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Righetti, Karima</creator><creator>Vu, Joseph Ly</creator><creator>Pelletier, Sandra</creator><creator>Vu, Benoit Ly</creator><creator>Glaab, Enrico</creator><creator>Lalanne, David</creator><creator>Pasha, Asher</creator><creator>Patel, Rohan V.</creator><creator>Provart, Nicholas J.</creator><creator>Verdier, Jerome</creator><creator>Leprince, Olivier</creator><creator>Buitink, Julia</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Biologists (ASPB)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1457-764X</orcidid><orcidid>https://orcid.org/0000-0003-3977-7469</orcidid><orcidid>https://orcid.org/0000-0001-7582-2939</orcidid><orcidid>https://orcid.org/0009-0004-6166-270X</orcidid><orcidid>https://orcid.org/0000-0003-3039-2159</orcidid><orcidid>https://orcid.org/0000-0003-1414-8690</orcidid></search><sort><creationdate>20151001</creationdate><title>Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways</title><author>Righetti, Karima ; Vu, Joseph Ly ; Pelletier, Sandra ; Vu, Benoit Ly ; Glaab, Enrico ; Lalanne, David ; Pasha, Asher ; Patel, Rohan V. ; Provart, Nicholas J. ; Verdier, Jerome ; Leprince, Olivier ; Buitink, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-996f15888cabb33753c5a51432cb9814fe24db73b1fac35a4f1a385eb53568623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis thaliana</topic><topic>Biological Evolution</topic><topic>Datasets</topic><topic>Developmental biology</topic><topic>Environment</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Germination</topic><topic>Large-Scale Biology</topic><topic>LARGE-SCALE BIOLOGY ARTICLE</topic><topic>Life Sciences</topic><topic>Longevity</topic><topic>Medicago truncatula</topic><topic>Medicago truncatula - genetics</topic><topic>Medicago truncatula - growth &amp; development</topic><topic>Medicago truncatula - physiology</topic><topic>Mutation</topic><topic>Pathogens</topic><topic>Phenotype</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Seed longevity</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Seeds - growth &amp; development</topic><topic>Seeds - physiology</topic><topic>Time Factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Righetti, Karima</creatorcontrib><creatorcontrib>Vu, Joseph Ly</creatorcontrib><creatorcontrib>Pelletier, Sandra</creatorcontrib><creatorcontrib>Vu, Benoit Ly</creatorcontrib><creatorcontrib>Glaab, Enrico</creatorcontrib><creatorcontrib>Lalanne, David</creatorcontrib><creatorcontrib>Pasha, Asher</creatorcontrib><creatorcontrib>Patel, Rohan V.</creatorcontrib><creatorcontrib>Provart, Nicholas J.</creatorcontrib><creatorcontrib>Verdier, Jerome</creatorcontrib><creatorcontrib>Leprince, Olivier</creatorcontrib><creatorcontrib>Buitink, Julia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Righetti, Karima</au><au>Vu, Joseph Ly</au><au>Pelletier, Sandra</au><au>Vu, Benoit Ly</au><au>Glaab, Enrico</au><au>Lalanne, David</au><au>Pasha, Asher</au><au>Patel, Rohan V.</au><au>Provart, Nicholas J.</au><au>Verdier, Jerome</au><au>Leprince, Olivier</au><au>Buitink, Julia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>27</volume><issue>10</issue><spage>2692</spage><epage>2708</epage><pages>2692-2708</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>Seed longevity, the maintenance of viability during storage, is a crucial factor for preservation of genetic resources and ensuring proper seedling establishment and high crop yield. We used a systems biology approach to identify key genes regulating the acquisition of longevity during seed maturation of Medicago truncatula. Using 104 transcriptomes from seed developmental time courses obtained in five growth environments, we generated a robust, stable coexpression network (MatNet), thereby capturing the conserved backbone of maturation. Using a trait-based gene significance measure, a coexpression module related to the acquisition of longevity was inferred from MatNet. Comparative analysis of the maturation processes in M. truncatula and Arabidopsis thaliana seeds and mining Arabidopsis interaction databases revealed conserved connectivity for 87% of longevity module nodes between both species. Arabidopsis mutant screening for longevity and maturation phenotypes demonstrated high predictive power of the longevity cross-species network. Overrepresentation analysis of the network nodes indicated biological functions related to defense, light, and auxin. Characterization of defense-related wrky3 and nf-x1-like1 (nfxl1) transcription factor mutants demonstrated that these genes regulate some of the network nodes and exhibit impaired acquisition of longevity during maturation. These data suggest that seed longevity evolved by co-opting existing genetic pathways regulating the activation of defense against pathogens.</abstract><cop>England</cop><pub>American Society of Plant Biologists</pub><pmid>26410298</pmid><doi>10.1105/tpc.15.00632</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1457-764X</orcidid><orcidid>https://orcid.org/0000-0003-3977-7469</orcidid><orcidid>https://orcid.org/0000-0001-7582-2939</orcidid><orcidid>https://orcid.org/0009-0004-6166-270X</orcidid><orcidid>https://orcid.org/0000-0003-3039-2159</orcidid><orcidid>https://orcid.org/0000-0003-1414-8690</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2015-10, Vol.27 (10), p.2692-2708
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4682330
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Arabidopsis
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - physiology
Arabidopsis thaliana
Biological Evolution
Datasets
Developmental biology
Environment
Gene expression regulation
Gene Expression Regulation, Plant
Gene Regulatory Networks
Genes
Germination
Large-Scale Biology
LARGE-SCALE BIOLOGY ARTICLE
Life Sciences
Longevity
Medicago truncatula
Medicago truncatula - genetics
Medicago truncatula - growth & development
Medicago truncatula - physiology
Mutation
Pathogens
Phenotype
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Seed longevity
Seeds
Seeds - genetics
Seeds - growth & development
Seeds - physiology
Time Factors
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptome
title Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20of%20Longevity-Related%20Genes%20from%20a%20Robust%20Coexpression%20Network%20of%20Seed%20Maturation%20Identifies%20Regulators%20Linking%20Seed%20Storability%20to%20Biotic%20Defense-Related%20Pathways&rft.jtitle=The%20Plant%20cell&rft.au=Righetti,%20Karima&rft.date=2015-10-01&rft.volume=27&rft.issue=10&rft.spage=2692&rft.epage=2708&rft.pages=2692-2708&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.15.00632&rft_dat=%3Cjstor_pubme%3Eplantcell.27.10.2692%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1731789642&rft_id=info:pmid/26410298&rft_jstor_id=plantcell.27.10.2692&rfr_iscdi=true