Paving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces
The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at p...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-12, Vol.5 (1), p.17229-17229, Article 17229 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17229 |
---|---|
container_issue | 1 |
container_start_page | 17229 |
container_title | Scientific reports |
container_volume | 5 |
creator | Frechero, M. A. Rocci, M. Sánchez-Santolino, G. Kumar, Amit Salafranca, J. Schmidt, Rainer Díaz-Guillén, M. R. Durá, O. J. Rivera-Calzada, A. Mishra, R. Jesse, Stephen Pantelides, S. T. Kalinin, Sergei V. Varela, M. Pennycook, S. J. Santamaria, J. Leon, C. |
description | The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together with a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. Besides the possible effect of the modified chemical bonding, this negative charge gives rise to an additional barrier for ion transport at the grain boundary. |
doi_str_mv | 10.1038/srep17229 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4682188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4108115441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-a62431262fd3aacadf79d5d8c642e25eea86982af5d6096b8ce351c1204a10853</originalsourceid><addsrcrecordid>eNplkV9rFDEUxYMobal96BeQoC-2sJo_k0ymD0IpWoWCPuir4W7mzmzKbrJNMi399k3duqw1LwncH-ecm0PIMWcfOJPmY0645q0Q3QtyIFijZkIK8XLnvU-Ocr5m9SjRNbzbI_tC61ZKxQ_I7x9w68NIywLpHdzTEmmAEH0M3uUzCiWuvKMx-dEHGgc6h5Q8pkyHmOgfipYEIa9jKlUkxWlcUB8KpgEc5tfk1QDLjEdP9yH59eXzz4uvs6vvl98uzq9mTkleZqBFI7nQYuglgIN-aLte9cbpRqBQiGB0ZwQMqtes03PjsKZ3vO4InBklD8mnje56mq-wdxhqqqVdJ7-CdG8jePvvJPiFHeOtbbQR3Jgq8HYjEHPxNjtf0C1cDAFdsVyoruVNhd4_uaR4M2EuduWzw-USAsYpW94q1oiuZayi756h13FKof6B5YZxLY2Uj64nG8qlmGuRwzYxZ_axXbttt7Jvdlfckn-7rMDpBsh1FEZMO5b_qT0Afneu5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801638338</pqid></control><display><type>article</type><title>Paving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Frechero, M. A. ; Rocci, M. ; Sánchez-Santolino, G. ; Kumar, Amit ; Salafranca, J. ; Schmidt, Rainer ; Díaz-Guillén, M. R. ; Durá, O. J. ; Rivera-Calzada, A. ; Mishra, R. ; Jesse, Stephen ; Pantelides, S. T. ; Kalinin, Sergei V. ; Varela, M. ; Pennycook, S. J. ; Santamaria, J. ; Leon, C.</creator><creatorcontrib>Frechero, M. A. ; Rocci, M. ; Sánchez-Santolino, G. ; Kumar, Amit ; Salafranca, J. ; Schmidt, Rainer ; Díaz-Guillén, M. R. ; Durá, O. J. ; Rivera-Calzada, A. ; Mishra, R. ; Jesse, Stephen ; Pantelides, S. T. ; Kalinin, Sergei V. ; Varela, M. ; Pennycook, S. J. ; Santamaria, J. ; Leon, C. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together with a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. Besides the possible effect of the modified chemical bonding, this negative charge gives rise to an additional barrier for ion transport at the grain boundary.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep17229</identifier><identifier>PMID: 26673351</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/893 ; 639/766/119/544 ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Electrochemistry ; Electron microscopy ; fuel cells ; Grain boundaries ; Humanities and Social Sciences ; Interfaces ; Ion transport ; Ions ; multidisciplinary ; Oxygen ; Oxygen depletion ; Science ; Spectroscopy ; surfaces, interfaces and thin films ; Transmission electron microscopy ; Zirconia</subject><ispartof>Scientific reports, 2015-12, Vol.5 (1), p.17229-17229, Article 17229</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Dec 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-a62431262fd3aacadf79d5d8c642e25eea86982af5d6096b8ce351c1204a10853</citedby><cites>FETCH-LOGICAL-c531t-a62431262fd3aacadf79d5d8c642e25eea86982af5d6096b8ce351c1204a10853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682188/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682188/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26673351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1259714$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Frechero, M. A.</creatorcontrib><creatorcontrib>Rocci, M.</creatorcontrib><creatorcontrib>Sánchez-Santolino, G.</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Salafranca, J.</creatorcontrib><creatorcontrib>Schmidt, Rainer</creatorcontrib><creatorcontrib>Díaz-Guillén, M. R.</creatorcontrib><creatorcontrib>Durá, O. J.</creatorcontrib><creatorcontrib>Rivera-Calzada, A.</creatorcontrib><creatorcontrib>Mishra, R.</creatorcontrib><creatorcontrib>Jesse, Stephen</creatorcontrib><creatorcontrib>Pantelides, S. T.</creatorcontrib><creatorcontrib>Kalinin, Sergei V.</creatorcontrib><creatorcontrib>Varela, M.</creatorcontrib><creatorcontrib>Pennycook, S. J.</creatorcontrib><creatorcontrib>Santamaria, J.</creatorcontrib><creatorcontrib>Leon, C.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Paving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together with a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. Besides the possible effect of the modified chemical bonding, this negative charge gives rise to an additional barrier for ion transport at the grain boundary.</description><subject>639/301/299/893</subject><subject>639/766/119/544</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Electrochemistry</subject><subject>Electron microscopy</subject><subject>fuel cells</subject><subject>Grain boundaries</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>Ion transport</subject><subject>Ions</subject><subject>multidisciplinary</subject><subject>Oxygen</subject><subject>Oxygen depletion</subject><subject>Science</subject><subject>Spectroscopy</subject><subject>surfaces, interfaces and thin films</subject><subject>Transmission electron microscopy</subject><subject>Zirconia</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkV9rFDEUxYMobal96BeQoC-2sJo_k0ymD0IpWoWCPuir4W7mzmzKbrJNMi399k3duqw1LwncH-ecm0PIMWcfOJPmY0645q0Q3QtyIFijZkIK8XLnvU-Ocr5m9SjRNbzbI_tC61ZKxQ_I7x9w68NIywLpHdzTEmmAEH0M3uUzCiWuvKMx-dEHGgc6h5Q8pkyHmOgfipYEIa9jKlUkxWlcUB8KpgEc5tfk1QDLjEdP9yH59eXzz4uvs6vvl98uzq9mTkleZqBFI7nQYuglgIN-aLte9cbpRqBQiGB0ZwQMqtes03PjsKZ3vO4InBklD8mnje56mq-wdxhqqqVdJ7-CdG8jePvvJPiFHeOtbbQR3Jgq8HYjEHPxNjtf0C1cDAFdsVyoruVNhd4_uaR4M2EuduWzw-USAsYpW94q1oiuZayi756h13FKof6B5YZxLY2Uj64nG8qlmGuRwzYxZ_axXbttt7Jvdlfckn-7rMDpBsh1FEZMO5b_qT0Afneu5A</recordid><startdate>20151217</startdate><enddate>20151217</enddate><creator>Frechero, M. A.</creator><creator>Rocci, M.</creator><creator>Sánchez-Santolino, G.</creator><creator>Kumar, Amit</creator><creator>Salafranca, J.</creator><creator>Schmidt, Rainer</creator><creator>Díaz-Guillén, M. R.</creator><creator>Durá, O. J.</creator><creator>Rivera-Calzada, A.</creator><creator>Mishra, R.</creator><creator>Jesse, Stephen</creator><creator>Pantelides, S. T.</creator><creator>Kalinin, Sergei V.</creator><creator>Varela, M.</creator><creator>Pennycook, S. J.</creator><creator>Santamaria, J.</creator><creator>Leon, C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20151217</creationdate><title>Paving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces</title><author>Frechero, M. A. ; Rocci, M. ; Sánchez-Santolino, G. ; Kumar, Amit ; Salafranca, J. ; Schmidt, Rainer ; Díaz-Guillén, M. R. ; Durá, O. J. ; Rivera-Calzada, A. ; Mishra, R. ; Jesse, Stephen ; Pantelides, S. T. ; Kalinin, Sergei V. ; Varela, M. ; Pennycook, S. J. ; Santamaria, J. ; Leon, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-a62431262fd3aacadf79d5d8c642e25eea86982af5d6096b8ce351c1204a10853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/301/299/893</topic><topic>639/766/119/544</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Electrochemistry</topic><topic>Electron microscopy</topic><topic>fuel cells</topic><topic>Grain boundaries</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>Ion transport</topic><topic>Ions</topic><topic>multidisciplinary</topic><topic>Oxygen</topic><topic>Oxygen depletion</topic><topic>Science</topic><topic>Spectroscopy</topic><topic>surfaces, interfaces and thin films</topic><topic>Transmission electron microscopy</topic><topic>Zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frechero, M. A.</creatorcontrib><creatorcontrib>Rocci, M.</creatorcontrib><creatorcontrib>Sánchez-Santolino, G.</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Salafranca, J.</creatorcontrib><creatorcontrib>Schmidt, Rainer</creatorcontrib><creatorcontrib>Díaz-Guillén, M. R.</creatorcontrib><creatorcontrib>Durá, O. J.</creatorcontrib><creatorcontrib>Rivera-Calzada, A.</creatorcontrib><creatorcontrib>Mishra, R.</creatorcontrib><creatorcontrib>Jesse, Stephen</creatorcontrib><creatorcontrib>Pantelides, S. T.</creatorcontrib><creatorcontrib>Kalinin, Sergei V.</creatorcontrib><creatorcontrib>Varela, M.</creatorcontrib><creatorcontrib>Pennycook, S. J.</creatorcontrib><creatorcontrib>Santamaria, J.</creatorcontrib><creatorcontrib>Leon, C.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frechero, M. A.</au><au>Rocci, M.</au><au>Sánchez-Santolino, G.</au><au>Kumar, Amit</au><au>Salafranca, J.</au><au>Schmidt, Rainer</au><au>Díaz-Guillén, M. R.</au><au>Durá, O. J.</au><au>Rivera-Calzada, A.</au><au>Mishra, R.</au><au>Jesse, Stephen</au><au>Pantelides, S. T.</au><au>Kalinin, Sergei V.</au><au>Varela, M.</au><au>Pennycook, S. J.</au><au>Santamaria, J.</au><au>Leon, C.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-12-17</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>17229</spage><epage>17229</epage><pages>17229-17229</pages><artnum>17229</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together with a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. Besides the possible effect of the modified chemical bonding, this negative charge gives rise to an additional barrier for ion transport at the grain boundary.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26673351</pmid><doi>10.1038/srep17229</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-12, Vol.5 (1), p.17229-17229, Article 17229 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4682188 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/301/299/893 639/766/119/544 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Electrochemistry Electron microscopy fuel cells Grain boundaries Humanities and Social Sciences Interfaces Ion transport Ions multidisciplinary Oxygen Oxygen depletion Science Spectroscopy surfaces, interfaces and thin films Transmission electron microscopy Zirconia |
title | Paving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paving%20the%20way%20to%20nanoionics:%20atomic%20origin%20of%20barriers%20for%20ionic%20transport%20through%20interfaces&rft.jtitle=Scientific%20reports&rft.au=Frechero,%20M.%20A.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2015-12-17&rft.volume=5&rft.issue=1&rft.spage=17229&rft.epage=17229&rft.pages=17229-17229&rft.artnum=17229&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep17229&rft_dat=%3Cproquest_pubme%3E4108115441%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1801638338&rft_id=info:pmid/26673351&rfr_iscdi=true |