Binding dynamics of a monomeric SSB protein to DNA: a single-molecule multi-process approach

Single-stranded DNA binding proteins (SSBs) are ubiquitous across all organisms and are characterized by the presence of an OB (oligonucleotide/oligosaccharide/oligopeptide) binding motif to recognize single-stranded DNA (ssDNA). Despite their critical role in genome maintenance, our knowledge about...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2015-12, Vol.43 (22), p.10907-10924
Hauptverfasser: Morten, Michael J, Peregrina, Jose R, Figueira-Gonzalez, Maria, Ackermann, Katrin, Bode, Bela E, White, Malcolm F, Penedo, J Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10924
container_issue 22
container_start_page 10907
container_title Nucleic acids research
container_volume 43
creator Morten, Michael J
Peregrina, Jose R
Figueira-Gonzalez, Maria
Ackermann, Katrin
Bode, Bela E
White, Malcolm F
Penedo, J Carlos
description Single-stranded DNA binding proteins (SSBs) are ubiquitous across all organisms and are characterized by the presence of an OB (oligonucleotide/oligosaccharide/oligopeptide) binding motif to recognize single-stranded DNA (ssDNA). Despite their critical role in genome maintenance, our knowledge about SSB function is limited to proteins containing multiple OB-domains and little is known about single OB-folds interacting with ssDNA. Sulfolobus solfataricus SSB (SsoSSB) contains a single OB-fold and being the simplest representative of the SSB-family may serve as a model to understand fundamental aspects of SSB:DNA interactions. Here, we introduce a novel approach based on the competition between Förster resonance energy transfer (FRET), protein-induced fluorescence enhancement (PIFE) and quenching to dissect SsoSSB binding dynamics at single-monomer resolution. We demonstrate that SsoSSB follows a monomer-by-monomer binding mechanism that involves a positive-cooperativity component between adjacent monomers. We found that SsoSSB dynamic behaviour is closer to that of Replication Protein A than to Escherichia coli SSB; a feature that might be inherited from the structural analogies of their DNA-binding domains. We hypothesize that SsoSSB has developed a balance between high-density binding and a highly dynamic interaction with ssDNA to ensure efficient protection of the genome but still allow access to ssDNA during vital cellular processes.
doi_str_mv 10.1093/nar/gkv1225
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4678828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1750000120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-722ed8377f6717e0f87dbc3d747fd9477fd9fdedc9f587489eab0efd8c62d57d3</originalsourceid><addsrcrecordid>eNpVkU1LJDEQhoOs6Phx8r7kuLC0JulOJ72HBb8VRA_qTQiZpDJGu5PZpFvw3xtxVrQOVQX11FsFL0J7lOxT0tUHQaeDxfMLZYyvoRmtW1Y1Xct-oBmpCa8oaeQm2sr5iRDaUN5soE3WciG54DP0cOSD9WGB7WvQgzcZR4c1HmKIAyRv8O3tEV6mOIIPeIz45PrwT5nnstJDNcQezNQDHqZ-9FXhDOSM9bJ02jzuoHWn-wy7q7qN7s9O744vqqub88vjw6vK1JKOlWAMrKyFcK2gAoiTws5NbUUjnO0a8Z6dBWs6x6VoZAd6TsBZaVpmubD1Nvr7obuc5kPhIIxJ92qZ_KDTq4raq--T4B_VIr6ophVSMlkEfq0EUvw3QR7V4LOBvtcB4pQVFZyUoIwU9PcHalLMOYH7PEOJevdDFT_Uyo9C__z62Sf734D6DYsliXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750000120</pqid></control><display><type>article</type><title>Binding dynamics of a monomeric SSB protein to DNA: a single-molecule multi-process approach</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Morten, Michael J ; Peregrina, Jose R ; Figueira-Gonzalez, Maria ; Ackermann, Katrin ; Bode, Bela E ; White, Malcolm F ; Penedo, J Carlos</creator><creatorcontrib>Morten, Michael J ; Peregrina, Jose R ; Figueira-Gonzalez, Maria ; Ackermann, Katrin ; Bode, Bela E ; White, Malcolm F ; Penedo, J Carlos</creatorcontrib><description>Single-stranded DNA binding proteins (SSBs) are ubiquitous across all organisms and are characterized by the presence of an OB (oligonucleotide/oligosaccharide/oligopeptide) binding motif to recognize single-stranded DNA (ssDNA). Despite their critical role in genome maintenance, our knowledge about SSB function is limited to proteins containing multiple OB-domains and little is known about single OB-folds interacting with ssDNA. Sulfolobus solfataricus SSB (SsoSSB) contains a single OB-fold and being the simplest representative of the SSB-family may serve as a model to understand fundamental aspects of SSB:DNA interactions. Here, we introduce a novel approach based on the competition between Förster resonance energy transfer (FRET), protein-induced fluorescence enhancement (PIFE) and quenching to dissect SsoSSB binding dynamics at single-monomer resolution. We demonstrate that SsoSSB follows a monomer-by-monomer binding mechanism that involves a positive-cooperativity component between adjacent monomers. We found that SsoSSB dynamic behaviour is closer to that of Replication Protein A than to Escherichia coli SSB; a feature that might be inherited from the structural analogies of their DNA-binding domains. We hypothesize that SsoSSB has developed a balance between high-density binding and a highly dynamic interaction with ssDNA to ensure efficient protection of the genome but still allow access to ssDNA during vital cellular processes.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkv1225</identifier><identifier>PMID: 26578575</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Archaeal Proteins - metabolism ; DNA, Single-Stranded - chemistry ; DNA, Single-Stranded - metabolism ; DNA-Binding Proteins - metabolism ; Fluorescence Resonance Energy Transfer ; Nucleic Acid Enzymes ; Protein Binding ; Sulfolobus solfataricus</subject><ispartof>Nucleic acids research, 2015-12, Vol.43 (22), p.10907-10924</ispartof><rights>The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-722ed8377f6717e0f87dbc3d747fd9477fd9fdedc9f587489eab0efd8c62d57d3</citedby><cites>FETCH-LOGICAL-c381t-722ed8377f6717e0f87dbc3d747fd9477fd9fdedc9f587489eab0efd8c62d57d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678828/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678828/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26578575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morten, Michael J</creatorcontrib><creatorcontrib>Peregrina, Jose R</creatorcontrib><creatorcontrib>Figueira-Gonzalez, Maria</creatorcontrib><creatorcontrib>Ackermann, Katrin</creatorcontrib><creatorcontrib>Bode, Bela E</creatorcontrib><creatorcontrib>White, Malcolm F</creatorcontrib><creatorcontrib>Penedo, J Carlos</creatorcontrib><title>Binding dynamics of a monomeric SSB protein to DNA: a single-molecule multi-process approach</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Single-stranded DNA binding proteins (SSBs) are ubiquitous across all organisms and are characterized by the presence of an OB (oligonucleotide/oligosaccharide/oligopeptide) binding motif to recognize single-stranded DNA (ssDNA). Despite their critical role in genome maintenance, our knowledge about SSB function is limited to proteins containing multiple OB-domains and little is known about single OB-folds interacting with ssDNA. Sulfolobus solfataricus SSB (SsoSSB) contains a single OB-fold and being the simplest representative of the SSB-family may serve as a model to understand fundamental aspects of SSB:DNA interactions. Here, we introduce a novel approach based on the competition between Förster resonance energy transfer (FRET), protein-induced fluorescence enhancement (PIFE) and quenching to dissect SsoSSB binding dynamics at single-monomer resolution. We demonstrate that SsoSSB follows a monomer-by-monomer binding mechanism that involves a positive-cooperativity component between adjacent monomers. We found that SsoSSB dynamic behaviour is closer to that of Replication Protein A than to Escherichia coli SSB; a feature that might be inherited from the structural analogies of their DNA-binding domains. We hypothesize that SsoSSB has developed a balance between high-density binding and a highly dynamic interaction with ssDNA to ensure efficient protection of the genome but still allow access to ssDNA during vital cellular processes.</description><subject>Archaeal Proteins - metabolism</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Nucleic Acid Enzymes</subject><subject>Protein Binding</subject><subject>Sulfolobus solfataricus</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1LJDEQhoOs6Phx8r7kuLC0JulOJ72HBb8VRA_qTQiZpDJGu5PZpFvw3xtxVrQOVQX11FsFL0J7lOxT0tUHQaeDxfMLZYyvoRmtW1Y1Xct-oBmpCa8oaeQm2sr5iRDaUN5soE3WciG54DP0cOSD9WGB7WvQgzcZR4c1HmKIAyRv8O3tEV6mOIIPeIz45PrwT5nnstJDNcQezNQDHqZ-9FXhDOSM9bJ02jzuoHWn-wy7q7qN7s9O744vqqub88vjw6vK1JKOlWAMrKyFcK2gAoiTws5NbUUjnO0a8Z6dBWs6x6VoZAd6TsBZaVpmubD1Nvr7obuc5kPhIIxJ92qZ_KDTq4raq--T4B_VIr6ophVSMlkEfq0EUvw3QR7V4LOBvtcB4pQVFZyUoIwU9PcHalLMOYH7PEOJevdDFT_Uyo9C__z62Sf734D6DYsliXg</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Morten, Michael J</creator><creator>Peregrina, Jose R</creator><creator>Figueira-Gonzalez, Maria</creator><creator>Ackermann, Katrin</creator><creator>Bode, Bela E</creator><creator>White, Malcolm F</creator><creator>Penedo, J Carlos</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151215</creationdate><title>Binding dynamics of a monomeric SSB protein to DNA: a single-molecule multi-process approach</title><author>Morten, Michael J ; Peregrina, Jose R ; Figueira-Gonzalez, Maria ; Ackermann, Katrin ; Bode, Bela E ; White, Malcolm F ; Penedo, J Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-722ed8377f6717e0f87dbc3d747fd9477fd9fdedc9f587489eab0efd8c62d57d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Archaeal Proteins - metabolism</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Nucleic Acid Enzymes</topic><topic>Protein Binding</topic><topic>Sulfolobus solfataricus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morten, Michael J</creatorcontrib><creatorcontrib>Peregrina, Jose R</creatorcontrib><creatorcontrib>Figueira-Gonzalez, Maria</creatorcontrib><creatorcontrib>Ackermann, Katrin</creatorcontrib><creatorcontrib>Bode, Bela E</creatorcontrib><creatorcontrib>White, Malcolm F</creatorcontrib><creatorcontrib>Penedo, J Carlos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morten, Michael J</au><au>Peregrina, Jose R</au><au>Figueira-Gonzalez, Maria</au><au>Ackermann, Katrin</au><au>Bode, Bela E</au><au>White, Malcolm F</au><au>Penedo, J Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binding dynamics of a monomeric SSB protein to DNA: a single-molecule multi-process approach</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2015-12-15</date><risdate>2015</risdate><volume>43</volume><issue>22</issue><spage>10907</spage><epage>10924</epage><pages>10907-10924</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Single-stranded DNA binding proteins (SSBs) are ubiquitous across all organisms and are characterized by the presence of an OB (oligonucleotide/oligosaccharide/oligopeptide) binding motif to recognize single-stranded DNA (ssDNA). Despite their critical role in genome maintenance, our knowledge about SSB function is limited to proteins containing multiple OB-domains and little is known about single OB-folds interacting with ssDNA. Sulfolobus solfataricus SSB (SsoSSB) contains a single OB-fold and being the simplest representative of the SSB-family may serve as a model to understand fundamental aspects of SSB:DNA interactions. Here, we introduce a novel approach based on the competition between Förster resonance energy transfer (FRET), protein-induced fluorescence enhancement (PIFE) and quenching to dissect SsoSSB binding dynamics at single-monomer resolution. We demonstrate that SsoSSB follows a monomer-by-monomer binding mechanism that involves a positive-cooperativity component between adjacent monomers. We found that SsoSSB dynamic behaviour is closer to that of Replication Protein A than to Escherichia coli SSB; a feature that might be inherited from the structural analogies of their DNA-binding domains. We hypothesize that SsoSSB has developed a balance between high-density binding and a highly dynamic interaction with ssDNA to ensure efficient protection of the genome but still allow access to ssDNA during vital cellular processes.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>26578575</pmid><doi>10.1093/nar/gkv1225</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2015-12, Vol.43 (22), p.10907-10924
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4678828
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Archaeal Proteins - metabolism
DNA, Single-Stranded - chemistry
DNA, Single-Stranded - metabolism
DNA-Binding Proteins - metabolism
Fluorescence Resonance Energy Transfer
Nucleic Acid Enzymes
Protein Binding
Sulfolobus solfataricus
title Binding dynamics of a monomeric SSB protein to DNA: a single-molecule multi-process approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binding%20dynamics%20of%20a%20monomeric%20SSB%20protein%20to%20DNA:%20a%20single-molecule%20multi-process%20approach&rft.jtitle=Nucleic%20acids%20research&rft.au=Morten,%20Michael%20J&rft.date=2015-12-15&rft.volume=43&rft.issue=22&rft.spage=10907&rft.epage=10924&rft.pages=10907-10924&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkv1225&rft_dat=%3Cproquest_pubme%3E1750000120%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750000120&rft_id=info:pmid/26578575&rfr_iscdi=true