Size and Purity Control of HPHT Nanodiamonds down to 1 nm
High-pressure high-temperature (HPHT) nanodiamonds originate from grinding of diamond microcrystals obtained by HPHT synthesis. Here we report on a simple two-step approach to obtain as small as 1.1 nm HPHT nanodiamonds of excellent purity and crystallinity, which are among the smallest artificially...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2015-12, Vol.119 (49), p.27708-27720 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27720 |
---|---|
container_issue | 49 |
container_start_page | 27708 |
container_title | Journal of physical chemistry. C |
container_volume | 119 |
creator | Stehlik, Stepan Varga, Marian Ledinsky, Martin Jirasek, Vit Artemenko, Anna Kozak, Halyna Ondic, Lukas Skakalova, Viera Argentero, Giacomo Pennycook, Timothy Meyer, Jannik C Fejfar, Antonin Kromka, Alexander Rezek, Bohuslav |
description | High-pressure high-temperature (HPHT) nanodiamonds originate from grinding of diamond microcrystals obtained by HPHT synthesis. Here we report on a simple two-step approach to obtain as small as 1.1 nm HPHT nanodiamonds of excellent purity and crystallinity, which are among the smallest artificially prepared nanodiamonds ever shown and characterized. Moreover we provide experimental evidence of diamond stability down to 1 nm. Controlled annealing at 450 °C in air leads to efficient purification from the nondiamond carbon (shells and dots), as evidenced by X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, and scanning transmission electron microscopy. Annealing at 500 °C promotes, besides of purification, also size reduction of nanodiamonds down to ∼1 nm. Comparably short (1 h) centrifugation of the nanodiamonds aqueous colloidal solution ensures separation of the sub-10 nm fraction. Calculations show that an asymmetry of Raman diamond peak of sub-10 nm HPHT nanodiamonds can be well explained by modified phonon confinement model when the actual particle size distribution is taken into account. In contrast, larger Raman peak asymmetry commonly observed in Raman spectra of detonation nanodiamonds is mainly attributed to defects rather than to the phonon confinement. Thus, the obtained characteristics reflect high material quality including nanoscale effects in sub-10 nm HPHT nanodiamonds prepared by the presented method. |
doi_str_mv | 10.1021/acs.jpcc.5b05259 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4677353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826646499</sourcerecordid><originalsourceid>FETCH-LOGICAL-a602t-b66c68a59d0034b15c1d5464453d1df8882dce243cdf68a6d4246e53b989e49c3</originalsourceid><addsrcrecordid>eNqFkc2LEzEYh4O4uLV69yQ5etjp5vvjIkhZrbDsFqznkEkyOmUmqZMZZf3rTW0t7mHpKYE8vx_vmweANxgtMCL42rq82O6cW_AaccL1MzDDmpJKMs6fn-5MXoKXOW8R4hRh-gJcEiE0FkzOgP7S_g7QRg_X09COD3CZ4jikDqYGrtarDbyzMfnW9in6DH36FeGYIIaxfwUuGtvl8Pp4zsHXjzeb5aq6vf_0efnhtrICkbGqhXBCWa49QpTVmDvsOROMceqxb5RSxLtAGHW-KZzwjDAROK210oFpR-fg_aF3N9V9KGyZz3ZmN7S9HR5Msq15_BLb7-Zb-mmYkJJyWgreHQuG9GMKeTR9m13oOhtDmrIhSEjCkNLqLIpV-bkyvNbnUSkVEnsrBUUH1A0p5yE0p-ExMnuPpng0e4_m6LFE3v6_9CnwT1wBrg7A32iahlgcPN33B6L3p3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778060525</pqid></control><display><type>article</type><title>Size and Purity Control of HPHT Nanodiamonds down to 1 nm</title><source>ACS Publications</source><creator>Stehlik, Stepan ; Varga, Marian ; Ledinsky, Martin ; Jirasek, Vit ; Artemenko, Anna ; Kozak, Halyna ; Ondic, Lukas ; Skakalova, Viera ; Argentero, Giacomo ; Pennycook, Timothy ; Meyer, Jannik C ; Fejfar, Antonin ; Kromka, Alexander ; Rezek, Bohuslav</creator><creatorcontrib>Stehlik, Stepan ; Varga, Marian ; Ledinsky, Martin ; Jirasek, Vit ; Artemenko, Anna ; Kozak, Halyna ; Ondic, Lukas ; Skakalova, Viera ; Argentero, Giacomo ; Pennycook, Timothy ; Meyer, Jannik C ; Fejfar, Antonin ; Kromka, Alexander ; Rezek, Bohuslav</creatorcontrib><description>High-pressure high-temperature (HPHT) nanodiamonds originate from grinding of diamond microcrystals obtained by HPHT synthesis. Here we report on a simple two-step approach to obtain as small as 1.1 nm HPHT nanodiamonds of excellent purity and crystallinity, which are among the smallest artificially prepared nanodiamonds ever shown and characterized. Moreover we provide experimental evidence of diamond stability down to 1 nm. Controlled annealing at 450 °C in air leads to efficient purification from the nondiamond carbon (shells and dots), as evidenced by X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, and scanning transmission electron microscopy. Annealing at 500 °C promotes, besides of purification, also size reduction of nanodiamonds down to ∼1 nm. Comparably short (1 h) centrifugation of the nanodiamonds aqueous colloidal solution ensures separation of the sub-10 nm fraction. Calculations show that an asymmetry of Raman diamond peak of sub-10 nm HPHT nanodiamonds can be well explained by modified phonon confinement model when the actual particle size distribution is taken into account. In contrast, larger Raman peak asymmetry commonly observed in Raman spectra of detonation nanodiamonds is mainly attributed to defects rather than to the phonon confinement. Thus, the obtained characteristics reflect high material quality including nanoscale effects in sub-10 nm HPHT nanodiamonds prepared by the presented method.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b05259</identifier><identifier>PMID: 26691647</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>air ; Annealing ; Asymmetry ; carbon ; centrifugation ; Confinement ; crystal structure ; Diamonds ; grinding ; Mathematical models ; nanodiamonds ; Nanostructure ; particle size distribution ; Phonons ; photoluminescence ; Purification ; Raman spectroscopy ; transmission electron microscopy ; X-ray photoelectron spectroscopy</subject><ispartof>Journal of physical chemistry. C, 2015-12, Vol.119 (49), p.27708-27720</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright © 2015 American Chemical Society 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a602t-b66c68a59d0034b15c1d5464453d1df8882dce243cdf68a6d4246e53b989e49c3</citedby><cites>FETCH-LOGICAL-a602t-b66c68a59d0034b15c1d5464453d1df8882dce243cdf68a6d4246e53b989e49c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b05259$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b05259$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26691647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stehlik, Stepan</creatorcontrib><creatorcontrib>Varga, Marian</creatorcontrib><creatorcontrib>Ledinsky, Martin</creatorcontrib><creatorcontrib>Jirasek, Vit</creatorcontrib><creatorcontrib>Artemenko, Anna</creatorcontrib><creatorcontrib>Kozak, Halyna</creatorcontrib><creatorcontrib>Ondic, Lukas</creatorcontrib><creatorcontrib>Skakalova, Viera</creatorcontrib><creatorcontrib>Argentero, Giacomo</creatorcontrib><creatorcontrib>Pennycook, Timothy</creatorcontrib><creatorcontrib>Meyer, Jannik C</creatorcontrib><creatorcontrib>Fejfar, Antonin</creatorcontrib><creatorcontrib>Kromka, Alexander</creatorcontrib><creatorcontrib>Rezek, Bohuslav</creatorcontrib><title>Size and Purity Control of HPHT Nanodiamonds down to 1 nm</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>High-pressure high-temperature (HPHT) nanodiamonds originate from grinding of diamond microcrystals obtained by HPHT synthesis. Here we report on a simple two-step approach to obtain as small as 1.1 nm HPHT nanodiamonds of excellent purity and crystallinity, which are among the smallest artificially prepared nanodiamonds ever shown and characterized. Moreover we provide experimental evidence of diamond stability down to 1 nm. Controlled annealing at 450 °C in air leads to efficient purification from the nondiamond carbon (shells and dots), as evidenced by X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, and scanning transmission electron microscopy. Annealing at 500 °C promotes, besides of purification, also size reduction of nanodiamonds down to ∼1 nm. Comparably short (1 h) centrifugation of the nanodiamonds aqueous colloidal solution ensures separation of the sub-10 nm fraction. Calculations show that an asymmetry of Raman diamond peak of sub-10 nm HPHT nanodiamonds can be well explained by modified phonon confinement model when the actual particle size distribution is taken into account. In contrast, larger Raman peak asymmetry commonly observed in Raman spectra of detonation nanodiamonds is mainly attributed to defects rather than to the phonon confinement. Thus, the obtained characteristics reflect high material quality including nanoscale effects in sub-10 nm HPHT nanodiamonds prepared by the presented method.</description><subject>air</subject><subject>Annealing</subject><subject>Asymmetry</subject><subject>carbon</subject><subject>centrifugation</subject><subject>Confinement</subject><subject>crystal structure</subject><subject>Diamonds</subject><subject>grinding</subject><subject>Mathematical models</subject><subject>nanodiamonds</subject><subject>Nanostructure</subject><subject>particle size distribution</subject><subject>Phonons</subject><subject>photoluminescence</subject><subject>Purification</subject><subject>Raman spectroscopy</subject><subject>transmission electron microscopy</subject><subject>X-ray photoelectron spectroscopy</subject><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNqFkc2LEzEYh4O4uLV69yQ5etjp5vvjIkhZrbDsFqznkEkyOmUmqZMZZf3rTW0t7mHpKYE8vx_vmweANxgtMCL42rq82O6cW_AaccL1MzDDmpJKMs6fn-5MXoKXOW8R4hRh-gJcEiE0FkzOgP7S_g7QRg_X09COD3CZ4jikDqYGrtarDbyzMfnW9in6DH36FeGYIIaxfwUuGtvl8Pp4zsHXjzeb5aq6vf_0efnhtrICkbGqhXBCWa49QpTVmDvsOROMceqxb5RSxLtAGHW-KZzwjDAROK210oFpR-fg_aF3N9V9KGyZz3ZmN7S9HR5Msq15_BLb7-Zb-mmYkJJyWgreHQuG9GMKeTR9m13oOhtDmrIhSEjCkNLqLIpV-bkyvNbnUSkVEnsrBUUH1A0p5yE0p-ExMnuPpng0e4_m6LFE3v6_9CnwT1wBrg7A32iahlgcPN33B6L3p3A</recordid><startdate>20151210</startdate><enddate>20151210</enddate><creator>Stehlik, Stepan</creator><creator>Varga, Marian</creator><creator>Ledinsky, Martin</creator><creator>Jirasek, Vit</creator><creator>Artemenko, Anna</creator><creator>Kozak, Halyna</creator><creator>Ondic, Lukas</creator><creator>Skakalova, Viera</creator><creator>Argentero, Giacomo</creator><creator>Pennycook, Timothy</creator><creator>Meyer, Jannik C</creator><creator>Fejfar, Antonin</creator><creator>Kromka, Alexander</creator><creator>Rezek, Bohuslav</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20151210</creationdate><title>Size and Purity Control of HPHT Nanodiamonds down to 1 nm</title><author>Stehlik, Stepan ; Varga, Marian ; Ledinsky, Martin ; Jirasek, Vit ; Artemenko, Anna ; Kozak, Halyna ; Ondic, Lukas ; Skakalova, Viera ; Argentero, Giacomo ; Pennycook, Timothy ; Meyer, Jannik C ; Fejfar, Antonin ; Kromka, Alexander ; Rezek, Bohuslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a602t-b66c68a59d0034b15c1d5464453d1df8882dce243cdf68a6d4246e53b989e49c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>air</topic><topic>Annealing</topic><topic>Asymmetry</topic><topic>carbon</topic><topic>centrifugation</topic><topic>Confinement</topic><topic>crystal structure</topic><topic>Diamonds</topic><topic>grinding</topic><topic>Mathematical models</topic><topic>nanodiamonds</topic><topic>Nanostructure</topic><topic>particle size distribution</topic><topic>Phonons</topic><topic>photoluminescence</topic><topic>Purification</topic><topic>Raman spectroscopy</topic><topic>transmission electron microscopy</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stehlik, Stepan</creatorcontrib><creatorcontrib>Varga, Marian</creatorcontrib><creatorcontrib>Ledinsky, Martin</creatorcontrib><creatorcontrib>Jirasek, Vit</creatorcontrib><creatorcontrib>Artemenko, Anna</creatorcontrib><creatorcontrib>Kozak, Halyna</creatorcontrib><creatorcontrib>Ondic, Lukas</creatorcontrib><creatorcontrib>Skakalova, Viera</creatorcontrib><creatorcontrib>Argentero, Giacomo</creatorcontrib><creatorcontrib>Pennycook, Timothy</creatorcontrib><creatorcontrib>Meyer, Jannik C</creatorcontrib><creatorcontrib>Fejfar, Antonin</creatorcontrib><creatorcontrib>Kromka, Alexander</creatorcontrib><creatorcontrib>Rezek, Bohuslav</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stehlik, Stepan</au><au>Varga, Marian</au><au>Ledinsky, Martin</au><au>Jirasek, Vit</au><au>Artemenko, Anna</au><au>Kozak, Halyna</au><au>Ondic, Lukas</au><au>Skakalova, Viera</au><au>Argentero, Giacomo</au><au>Pennycook, Timothy</au><au>Meyer, Jannik C</au><au>Fejfar, Antonin</au><au>Kromka, Alexander</au><au>Rezek, Bohuslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size and Purity Control of HPHT Nanodiamonds down to 1 nm</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-12-10</date><risdate>2015</risdate><volume>119</volume><issue>49</issue><spage>27708</spage><epage>27720</epage><pages>27708-27720</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>High-pressure high-temperature (HPHT) nanodiamonds originate from grinding of diamond microcrystals obtained by HPHT synthesis. Here we report on a simple two-step approach to obtain as small as 1.1 nm HPHT nanodiamonds of excellent purity and crystallinity, which are among the smallest artificially prepared nanodiamonds ever shown and characterized. Moreover we provide experimental evidence of diamond stability down to 1 nm. Controlled annealing at 450 °C in air leads to efficient purification from the nondiamond carbon (shells and dots), as evidenced by X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, and scanning transmission electron microscopy. Annealing at 500 °C promotes, besides of purification, also size reduction of nanodiamonds down to ∼1 nm. Comparably short (1 h) centrifugation of the nanodiamonds aqueous colloidal solution ensures separation of the sub-10 nm fraction. Calculations show that an asymmetry of Raman diamond peak of sub-10 nm HPHT nanodiamonds can be well explained by modified phonon confinement model when the actual particle size distribution is taken into account. In contrast, larger Raman peak asymmetry commonly observed in Raman spectra of detonation nanodiamonds is mainly attributed to defects rather than to the phonon confinement. Thus, the obtained characteristics reflect high material quality including nanoscale effects in sub-10 nm HPHT nanodiamonds prepared by the presented method.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26691647</pmid><doi>10.1021/acs.jpcc.5b05259</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2015-12, Vol.119 (49), p.27708-27720 |
issn | 1932-7447 1932-7455 1932-7455 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4677353 |
source | ACS Publications |
subjects | air Annealing Asymmetry carbon centrifugation Confinement crystal structure Diamonds grinding Mathematical models nanodiamonds Nanostructure particle size distribution Phonons photoluminescence Purification Raman spectroscopy transmission electron microscopy X-ray photoelectron spectroscopy |
title | Size and Purity Control of HPHT Nanodiamonds down to 1 nm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20and%20Purity%20Control%20of%20HPHT%20Nanodiamonds%20down%20to%201%20nm&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Stehlik,%20Stepan&rft.date=2015-12-10&rft.volume=119&rft.issue=49&rft.spage=27708&rft.epage=27720&rft.pages=27708-27720&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b05259&rft_dat=%3Cproquest_pubme%3E1826646499%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778060525&rft_id=info:pmid/26691647&rfr_iscdi=true |