Updates to the Integrated Protein–Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2

We present an updated and integrated version of our widely used protein–protein docking and binding affinity benchmarks. The benchmarks consist of non-redundant, high-quality structures of protein–protein complexes along with the unbound structures of their components. Fifty-five new complexes were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2015-09, Vol.427 (19), p.3031-3041
Hauptverfasser: Vreven, Thom, Moal, Iain H., Vangone, Anna, Pierce, Brian G., Kastritis, Panagiotis L., Torchala, Mieczyslaw, Chaleil, Raphael, Jiménez-García, Brian, Bates, Paul A., Fernandez-Recio, Juan, Bonvin, Alexandre M.J.J., Weng, Zhiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3041
container_issue 19
container_start_page 3031
container_title Journal of molecular biology
container_volume 427
creator Vreven, Thom
Moal, Iain H.
Vangone, Anna
Pierce, Brian G.
Kastritis, Panagiotis L.
Torchala, Mieczyslaw
Chaleil, Raphael
Jiménez-García, Brian
Bates, Paul A.
Fernandez-Recio, Juan
Bonvin, Alexandre M.J.J.
Weng, Zhiping
description We present an updated and integrated version of our widely used protein–protein docking and binding affinity benchmarks. The benchmarks consist of non-redundant, high-quality structures of protein–protein complexes along with the unbound structures of their components. Fifty-five new complexes were added to the docking benchmark, 35 of which have experimentally measured binding affinities. These updated docking and affinity benchmarks now contain 230 and 179 entries, respectively. In particular, the number of antibody–antigen complexes has increased significantly, by 67% and 74% in the docking and affinity benchmarks, respectively. We tested previously developed docking and affinity prediction algorithms on the new cases. Considering only the top 10 docking predictions per benchmark case, a prediction accuracy of 38% is achieved on all 55 cases and up to 50% for the 32 rigid-body cases only. Predicted affinity scores are found to correlate with experimental binding energies up to r=0.52 overall and r=0.72 for the rigid complexes. [Display omitted] •Large non-redundant data sets are needed for the development of algorithms for protein–protein complex structure and binding affinity prediction.•The previously published docking and affinity structural benchmarks are updated, increasing the number of cases by 31% and 24%, respectively.•State-of-the-art structure and affinity algorithms are tested using the new set of complexes.•The updates improve the balance of the benchmarks and include complexes that are challenging for current algorithms, and will aid the development of improved algorithms.
doi_str_mv 10.1016/j.jmb.2015.07.016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4677049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283615004180</els_id><sourcerecordid>1715659924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c662t-c58e31ad640d021f2380086010f9561de2238393ffae8a2695f26bce8872ad1e3</originalsourceid><addsrcrecordid>eNqFUstuEzEUtRCIhsIHsEGzZDPDtWfGY4OEVMqrUiVYULaWY99JnCZ2sJ1K3fUf-EO-BKcJoUgIFpbtc885vlc-hDyl0FCg_MWiWaymDQPaNzA0BblHJhSErAVvxX0yAWCsZqLlR-RRSgsA6NtOPCRHjLOWlsKE3Fysrc6YqhyqPMfqzGecxYLY6nMMGZ3_cfN9f7otRm2yC756g97MVzpeppfV22AunZ_9xqqvGNOW1Vfa2-pkHJ13-fovBPaYPBj1MuGT_X5MLt6_-3L6sT7_9OHs9OS8NpyzXJteYEu15R1YYHRkrQAQHCiMsufUIitIK9tx1Cg047IfGZ8aFGJg2lJsj8nrne96M12hNehz1Eu1jq70c62CdurPindzNQtXquPDAJ0sBnRnYNLGqIgGo9H5Vni4bBeDgSkmqGS0aJ7vH43h2wZTViuXDC6X2mPYpMIF6IZOiv6_VDrQnvdSsu5OJzGkFHE8TEFBbYOhFqoEQ22DoWBQBSmaZ3fHPyh-JaEQXu0IWD7hymFUybjyXWhdGS8rG9w_7H8CeX7Kxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1715659924</pqid></control><display><type>article</type><title>Updates to the Integrated Protein–Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2</title><source>MEDLINE</source><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Vreven, Thom ; Moal, Iain H. ; Vangone, Anna ; Pierce, Brian G. ; Kastritis, Panagiotis L. ; Torchala, Mieczyslaw ; Chaleil, Raphael ; Jiménez-García, Brian ; Bates, Paul A. ; Fernandez-Recio, Juan ; Bonvin, Alexandre M.J.J. ; Weng, Zhiping</creator><creatorcontrib>Vreven, Thom ; Moal, Iain H. ; Vangone, Anna ; Pierce, Brian G. ; Kastritis, Panagiotis L. ; Torchala, Mieczyslaw ; Chaleil, Raphael ; Jiménez-García, Brian ; Bates, Paul A. ; Fernandez-Recio, Juan ; Bonvin, Alexandre M.J.J. ; Weng, Zhiping</creatorcontrib><description>We present an updated and integrated version of our widely used protein–protein docking and binding affinity benchmarks. The benchmarks consist of non-redundant, high-quality structures of protein–protein complexes along with the unbound structures of their components. Fifty-five new complexes were added to the docking benchmark, 35 of which have experimentally measured binding affinities. These updated docking and affinity benchmarks now contain 230 and 179 entries, respectively. In particular, the number of antibody–antigen complexes has increased significantly, by 67% and 74% in the docking and affinity benchmarks, respectively. We tested previously developed docking and affinity prediction algorithms on the new cases. Considering only the top 10 docking predictions per benchmark case, a prediction accuracy of 38% is achieved on all 55 cases and up to 50% for the 32 rigid-body cases only. Predicted affinity scores are found to correlate with experimental binding energies up to r=0.52 overall and r=0.72 for the rigid complexes. [Display omitted] •Large non-redundant data sets are needed for the development of algorithms for protein–protein complex structure and binding affinity prediction.•The previously published docking and affinity structural benchmarks are updated, increasing the number of cases by 31% and 24%, respectively.•State-of-the-art structure and affinity algorithms are tested using the new set of complexes.•The updates improve the balance of the benchmarks and include complexes that are challenging for current algorithms, and will aid the development of improved algorithms.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2015.07.016</identifier><identifier>PMID: 26231283</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Algorithms ; Animals ; Antibody–antigen ; binding capacity ; Binding free energy ; Conformational change ; Enginyeria electrònica ; Estructura ; Humans ; Molecular Docking Simulation ; Polynucleotide Adenylyltransferase - chemistry ; Polynucleotide Adenylyltransferase - metabolism ; prediction ; Protein Binding ; Protein Conformation ; Protein Interaction Mapping - methods ; Protein Structure ; Protein-protein interactions ; Proteins - chemistry ; Proteins - metabolism ; Protein–protein complex structure ; Protein–protein interface ; Proteïnes ; Software ; Thermodynamics ; Vaccinia virus - chemistry ; Vaccinia virus - metabolism ; Viral Proteins - chemistry ; Viral Proteins - metabolism ; Àrees temàtiques de la UPC</subject><ispartof>Journal of molecular biology, 2015-09, Vol.427 (19), p.3031-3041</ispartof><rights>2015</rights><rights>Copyright © 2015. Published by Elsevier Ltd.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c662t-c58e31ad640d021f2380086010f9561de2238393ffae8a2695f26bce8872ad1e3</citedby><cites>FETCH-LOGICAL-c662t-c58e31ad640d021f2380086010f9561de2238393ffae8a2695f26bce8872ad1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283615004180$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26231283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vreven, Thom</creatorcontrib><creatorcontrib>Moal, Iain H.</creatorcontrib><creatorcontrib>Vangone, Anna</creatorcontrib><creatorcontrib>Pierce, Brian G.</creatorcontrib><creatorcontrib>Kastritis, Panagiotis L.</creatorcontrib><creatorcontrib>Torchala, Mieczyslaw</creatorcontrib><creatorcontrib>Chaleil, Raphael</creatorcontrib><creatorcontrib>Jiménez-García, Brian</creatorcontrib><creatorcontrib>Bates, Paul A.</creatorcontrib><creatorcontrib>Fernandez-Recio, Juan</creatorcontrib><creatorcontrib>Bonvin, Alexandre M.J.J.</creatorcontrib><creatorcontrib>Weng, Zhiping</creatorcontrib><title>Updates to the Integrated Protein–Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>We present an updated and integrated version of our widely used protein–protein docking and binding affinity benchmarks. The benchmarks consist of non-redundant, high-quality structures of protein–protein complexes along with the unbound structures of their components. Fifty-five new complexes were added to the docking benchmark, 35 of which have experimentally measured binding affinities. These updated docking and affinity benchmarks now contain 230 and 179 entries, respectively. In particular, the number of antibody–antigen complexes has increased significantly, by 67% and 74% in the docking and affinity benchmarks, respectively. We tested previously developed docking and affinity prediction algorithms on the new cases. Considering only the top 10 docking predictions per benchmark case, a prediction accuracy of 38% is achieved on all 55 cases and up to 50% for the 32 rigid-body cases only. Predicted affinity scores are found to correlate with experimental binding energies up to r=0.52 overall and r=0.72 for the rigid complexes. [Display omitted] •Large non-redundant data sets are needed for the development of algorithms for protein–protein complex structure and binding affinity prediction.•The previously published docking and affinity structural benchmarks are updated, increasing the number of cases by 31% and 24%, respectively.•State-of-the-art structure and affinity algorithms are tested using the new set of complexes.•The updates improve the balance of the benchmarks and include complexes that are challenging for current algorithms, and will aid the development of improved algorithms.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Antibody–antigen</subject><subject>binding capacity</subject><subject>Binding free energy</subject><subject>Conformational change</subject><subject>Enginyeria electrònica</subject><subject>Estructura</subject><subject>Humans</subject><subject>Molecular Docking Simulation</subject><subject>Polynucleotide Adenylyltransferase - chemistry</subject><subject>Polynucleotide Adenylyltransferase - metabolism</subject><subject>prediction</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein Structure</subject><subject>Protein-protein interactions</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Protein–protein complex structure</subject><subject>Protein–protein interface</subject><subject>Proteïnes</subject><subject>Software</subject><subject>Thermodynamics</subject><subject>Vaccinia virus - chemistry</subject><subject>Vaccinia virus - metabolism</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - metabolism</subject><subject>Àrees temàtiques de la UPC</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNqFUstuEzEUtRCIhsIHsEGzZDPDtWfGY4OEVMqrUiVYULaWY99JnCZ2sJ1K3fUf-EO-BKcJoUgIFpbtc885vlc-hDyl0FCg_MWiWaymDQPaNzA0BblHJhSErAVvxX0yAWCsZqLlR-RRSgsA6NtOPCRHjLOWlsKE3Fysrc6YqhyqPMfqzGecxYLY6nMMGZ3_cfN9f7otRm2yC756g97MVzpeppfV22AunZ_9xqqvGNOW1Vfa2-pkHJ13-fovBPaYPBj1MuGT_X5MLt6_-3L6sT7_9OHs9OS8NpyzXJteYEu15R1YYHRkrQAQHCiMsufUIitIK9tx1Cg047IfGZ8aFGJg2lJsj8nrne96M12hNehz1Eu1jq70c62CdurPindzNQtXquPDAJ0sBnRnYNLGqIgGo9H5Vni4bBeDgSkmqGS0aJ7vH43h2wZTViuXDC6X2mPYpMIF6IZOiv6_VDrQnvdSsu5OJzGkFHE8TEFBbYOhFqoEQ22DoWBQBSmaZ3fHPyh-JaEQXu0IWD7hymFUybjyXWhdGS8rG9w_7H8CeX7Kxg</recordid><startdate>20150925</startdate><enddate>20150925</enddate><creator>Vreven, Thom</creator><creator>Moal, Iain H.</creator><creator>Vangone, Anna</creator><creator>Pierce, Brian G.</creator><creator>Kastritis, Panagiotis L.</creator><creator>Torchala, Mieczyslaw</creator><creator>Chaleil, Raphael</creator><creator>Jiménez-García, Brian</creator><creator>Bates, Paul A.</creator><creator>Fernandez-Recio, Juan</creator><creator>Bonvin, Alexandre M.J.J.</creator><creator>Weng, Zhiping</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>XX2</scope><scope>5PM</scope></search><sort><creationdate>20150925</creationdate><title>Updates to the Integrated Protein–Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2</title><author>Vreven, Thom ; Moal, Iain H. ; Vangone, Anna ; Pierce, Brian G. ; Kastritis, Panagiotis L. ; Torchala, Mieczyslaw ; Chaleil, Raphael ; Jiménez-García, Brian ; Bates, Paul A. ; Fernandez-Recio, Juan ; Bonvin, Alexandre M.J.J. ; Weng, Zhiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c662t-c58e31ad640d021f2380086010f9561de2238393ffae8a2695f26bce8872ad1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Antibody–antigen</topic><topic>binding capacity</topic><topic>Binding free energy</topic><topic>Conformational change</topic><topic>Enginyeria electrònica</topic><topic>Estructura</topic><topic>Humans</topic><topic>Molecular Docking Simulation</topic><topic>Polynucleotide Adenylyltransferase - chemistry</topic><topic>Polynucleotide Adenylyltransferase - metabolism</topic><topic>prediction</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein Structure</topic><topic>Protein-protein interactions</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Protein–protein complex structure</topic><topic>Protein–protein interface</topic><topic>Proteïnes</topic><topic>Software</topic><topic>Thermodynamics</topic><topic>Vaccinia virus - chemistry</topic><topic>Vaccinia virus - metabolism</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - metabolism</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vreven, Thom</creatorcontrib><creatorcontrib>Moal, Iain H.</creatorcontrib><creatorcontrib>Vangone, Anna</creatorcontrib><creatorcontrib>Pierce, Brian G.</creatorcontrib><creatorcontrib>Kastritis, Panagiotis L.</creatorcontrib><creatorcontrib>Torchala, Mieczyslaw</creatorcontrib><creatorcontrib>Chaleil, Raphael</creatorcontrib><creatorcontrib>Jiménez-García, Brian</creatorcontrib><creatorcontrib>Bates, Paul A.</creatorcontrib><creatorcontrib>Fernandez-Recio, Juan</creatorcontrib><creatorcontrib>Bonvin, Alexandre M.J.J.</creatorcontrib><creatorcontrib>Weng, Zhiping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vreven, Thom</au><au>Moal, Iain H.</au><au>Vangone, Anna</au><au>Pierce, Brian G.</au><au>Kastritis, Panagiotis L.</au><au>Torchala, Mieczyslaw</au><au>Chaleil, Raphael</au><au>Jiménez-García, Brian</au><au>Bates, Paul A.</au><au>Fernandez-Recio, Juan</au><au>Bonvin, Alexandre M.J.J.</au><au>Weng, Zhiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Updates to the Integrated Protein–Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2015-09-25</date><risdate>2015</risdate><volume>427</volume><issue>19</issue><spage>3031</spage><epage>3041</epage><pages>3031-3041</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>We present an updated and integrated version of our widely used protein–protein docking and binding affinity benchmarks. The benchmarks consist of non-redundant, high-quality structures of protein–protein complexes along with the unbound structures of their components. Fifty-five new complexes were added to the docking benchmark, 35 of which have experimentally measured binding affinities. These updated docking and affinity benchmarks now contain 230 and 179 entries, respectively. In particular, the number of antibody–antigen complexes has increased significantly, by 67% and 74% in the docking and affinity benchmarks, respectively. We tested previously developed docking and affinity prediction algorithms on the new cases. Considering only the top 10 docking predictions per benchmark case, a prediction accuracy of 38% is achieved on all 55 cases and up to 50% for the 32 rigid-body cases only. Predicted affinity scores are found to correlate with experimental binding energies up to r=0.52 overall and r=0.72 for the rigid complexes. [Display omitted] •Large non-redundant data sets are needed for the development of algorithms for protein–protein complex structure and binding affinity prediction.•The previously published docking and affinity structural benchmarks are updated, increasing the number of cases by 31% and 24%, respectively.•State-of-the-art structure and affinity algorithms are tested using the new set of complexes.•The updates improve the balance of the benchmarks and include complexes that are challenging for current algorithms, and will aid the development of improved algorithms.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>26231283</pmid><doi>10.1016/j.jmb.2015.07.016</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2015-09, Vol.427 (19), p.3031-3041
issn 0022-2836
1089-8638
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4677049
source MEDLINE; Recercat; Elsevier ScienceDirect Journals
subjects Algorithms
Animals
Antibody–antigen
binding capacity
Binding free energy
Conformational change
Enginyeria electrònica
Estructura
Humans
Molecular Docking Simulation
Polynucleotide Adenylyltransferase - chemistry
Polynucleotide Adenylyltransferase - metabolism
prediction
Protein Binding
Protein Conformation
Protein Interaction Mapping - methods
Protein Structure
Protein-protein interactions
Proteins - chemistry
Proteins - metabolism
Protein–protein complex structure
Protein–protein interface
Proteïnes
Software
Thermodynamics
Vaccinia virus - chemistry
Vaccinia virus - metabolism
Viral Proteins - chemistry
Viral Proteins - metabolism
Àrees temàtiques de la UPC
title Updates to the Integrated Protein–Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Updates%20to%20the%20Integrated%20Protein%E2%80%93Protein%20Interaction%20Benchmarks:%20Docking%20Benchmark%20Version%205%20and%20Affinity%20Benchmark%20Version%202&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Vreven,%20Thom&rft.date=2015-09-25&rft.volume=427&rft.issue=19&rft.spage=3031&rft.epage=3041&rft.pages=3031-3041&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2015.07.016&rft_dat=%3Cproquest_pubme%3E1715659924%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1715659924&rft_id=info:pmid/26231283&rft_els_id=S0022283615004180&rfr_iscdi=true